Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
|
3 |
+
import gradio
|
4 |
+
import torch
|
5 |
+
from gradio import inputs, outputs
|
6 |
+
from PIL import Image
|
7 |
+
from torchvision import transforms
|
8 |
+
|
9 |
+
model = torch.hub.load("RF5/danbooru-pretrained", "resnet50")
|
10 |
+
model.eval()
|
11 |
+
|
12 |
+
with open("./tags.json", "rt", encoding="utf-8") as f:
|
13 |
+
tags = json.load(f)
|
14 |
+
|
15 |
+
|
16 |
+
def main(input_image: Image.Image, threshold: float):
|
17 |
+
preprocess = transforms.Compose(
|
18 |
+
[
|
19 |
+
transforms.Resize(360),
|
20 |
+
transforms.ToTensor(),
|
21 |
+
transforms.Normalize(
|
22 |
+
mean=[0.7137, 0.6628, 0.6519], std=[0.2970, 0.3017, 0.2979]
|
23 |
+
),
|
24 |
+
]
|
25 |
+
)
|
26 |
+
input_tensor = preprocess(input_image)
|
27 |
+
input_batch = input_tensor.unsqueeze(
|
28 |
+
0
|
29 |
+
) # create a mini-batch as expected by the model
|
30 |
+
|
31 |
+
if torch.cuda.is_available():
|
32 |
+
input_batch = input_batch.to("cuda")
|
33 |
+
model.to("cuda")
|
34 |
+
|
35 |
+
with torch.no_grad():
|
36 |
+
output, *_ = model(input_batch)
|
37 |
+
|
38 |
+
probs = torch.sigmoid(output)
|
39 |
+
|
40 |
+
results = probs[probs > threshold]
|
41 |
+
inds = probs.argsort(descending=True)
|
42 |
+
tag_confidences = {}
|
43 |
+
for index in inds[0 : len(results)]:
|
44 |
+
tag_confidences[tags[index]] = float(probs[index].cpu().numpy())
|
45 |
+
return tag_confidences
|
46 |
+
|
47 |
+
|
48 |
+
image = inputs.Image(label="Upload your image here!", type="pil")
|
49 |
+
threshold = inputs.Slider(
|
50 |
+
label="Hide images confidence under", maximum=1, minimum=0, default=0.2
|
51 |
+
)
|
52 |
+
|
53 |
+
labels = outputs.Label(type="confidence")
|
54 |
+
|
55 |
+
gradio.Interface(main, inputs=[image, threshold], outputs=[labels])
|