Spaces:
Build error
Build error
File size: 1,710 Bytes
8acb4c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
import streamlit as st
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image as keras_image
import numpy as np
from PIL import Image
# Load the pre-trained model
model = load_model('CNN_model.h5')
img_width, img_height = 256, 256
# from tensorflow.keras.preprocessing import image as keras_image
def preprocess_image(image):
# Convert image to RGB if it has fewer than 3 channels
if image.mode != 'RGB':
image = image.convert('RGB')
# Resize image to match model input shape
image = image.resize((img_width, img_height))
# Convert image to numpy array
image = keras_image.img_to_array(image)
# Ensure the image has 3 color channels (RGB)
if image.shape[-1] != 3:
raise ValueError("Image does not have 3 color channels (RGB)")
# Reshape image to add batch dimension
image = np.expand_dims(image, axis=0)
# Normalize pixel values
image = image / 255.0
return image
# Streamlit app
st.title('🌡️🦠Pneumonia Detection Model')
uploaded_file = st.file_uploader("Choose chest X-ray image...", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
# Display uploaded image
image = Image.open(uploaded_file)
st.image(image,width=400)
# Preprocess the image
processed_image = preprocess_image(image)
# Make prediction
prediction = model.predict(processed_image)
# Get class label
class_label = np.argmax(prediction)
# Display prediction
if class_label==1:
st.error('Affected by Pneumonia', icon="🚨")
else:
st.success('Result is NORMAL !!', icon="😊")
|