File size: 26,218 Bytes
f6dc68d 1472f98 f6dc68d 1472f98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 |
import streamlit as st
import torch
import numpy as np
from PIL import Image, ImageEnhance
import io
import requests
from transformers import (
BlipForConditionalGeneration,
BlipProcessor,
VisionEncoderDecoderModel,
ViTImageProcessor,
AutoTokenizer,
CLIPProcessor,
CLIPModel,
AutoModelForCausalLM,
AutoProcessor
)
from deep_translator import GoogleTranslator
from scipy.ndimage import variance
from concurrent.futures import ThreadPoolExecutor
# CONFIGURATION
st.set_page_config(
page_title="πΌοΈ AI Image Caption Generator",
layout="wide",
initial_sidebar_state="expanded"
)
# Define model configurations
MODEL_CONFIGS = {
"BLIP": {
"name": "BLIP",
"icon": "βοΈ",
"description": "BLIP excels at generating detailed and accurate image descriptions using vision-language pre-training.",
"generate_params": {"max_length": 50, "num_beams": 5, "min_length": 10, "top_p": 0.9, "repetition_penalty": 1.5}
},
"ViT-GPT2": {
"name": "ViT-GPT2",
"icon": "π",
"description": "ViT-GPT2 combines Vision Transformer with GPT2 for fluent and consistent image captions.",
"generate_params": {"max_length": 50, "num_beams": 5, "min_length": 10, "repetition_penalty": 1.5}
},
"GIT": {
"name": "GIT-base",
"icon": "π",
"description": "GIT generates contextually relevant captions with a focus on scene understanding.",
"generate_params": {"max_length": 50, "num_beams": 4, "min_length": 8, "repetition_penalty": 1.5}
},
"CLIP": {
"name": "CLIP",
"icon": "π¨",
"description": "CLIP provides comprehensive image analysis with confidence scores across content, scene, and style.",
}
}
# LOADING FUNCTIONS
@st.cache_resource
def load_blip_model():
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
if torch.cuda.is_available():
model = model.to("cuda")
return model, processor
@st.cache_resource
def load_vit_gpt2_model():
model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
feature_extractor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
if torch.cuda.is_available():
model = model.to("cuda")
return model, feature_extractor, tokenizer
@st.cache_resource
def load_git_model():
processor = AutoProcessor.from_pretrained("microsoft/git-base")
model = AutoModelForCausalLM.from_pretrained("microsoft/git-base")
if torch.cuda.is_available():
model = model.to("cuda")
return model, processor
@st.cache_resource
def load_clip_model():
processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14")
model = CLIPModel.from_pretrained("openai/clip-vit-large-patch14")
if torch.cuda.is_available():
model = model.to("cuda")
return model, processor
# IMAGE PROCESSING
def preprocess_image(image):
max_size = 1024
if max(image.size) > max_size:
ratio = max_size / max(image.size)
new_size = (int(image.size[0] * ratio), int(image.size[1] * ratio))
image = image.resize(new_size, Image.LANCZOS)
enhancer = ImageEnhance.Contrast(image)
image = enhancer.enhance(1.2)
img_array = np.array(image.convert('L'))
if np.mean(img_array) < 100:
brightness_enhancer = ImageEnhance.Brightness(image)
image = brightness_enhancer.enhance(1.3)
return image
def check_image_quality(image):
if image.width < 200 or image.height < 200:
return False, "Image is too small for accurate captioning. Consider using a larger image."
img_array = np.array(image.convert('L'))
if variance(img_array) < 100:
return False, "Image may be too blurry for accurate captioning. Consider using a clearer image."
return True, "Image quality is sufficient for captioning."
# CAPTION GENERATION FUNCTIONS
def generate_caption(image, model_name, models_data):
if model_name == "BLIP":
model, processor = models_data[model_name]
return get_blip_caption(image, model, processor)
elif model_name == "ViT-GPT2":
model, feature_extractor, tokenizer = models_data[model_name]
return get_vit_gpt2_caption(image, model, feature_extractor, tokenizer)
elif model_name == "GIT":
model, processor = models_data[model_name]
return get_git_caption(image, model, processor)
elif model_name == "CLIP":
model, processor = models_data[model_name]
return get_clip_caption(image, model, processor)
return "Model not supported"
def get_blip_caption(image, model, processor):
try:
inputs = processor(image, return_tensors="pt")
if torch.cuda.is_available():
inputs = {k: v.to("cuda") for k, v in inputs.items()}
output = model.generate(**inputs, **MODEL_CONFIGS["BLIP"]["generate_params"])
caption = processor.decode(output[0], skip_special_tokens=True)
return caption
except Exception as e:
return f"BLIP model error: {str(e)}"
def get_vit_gpt2_caption(image, model, feature_extractor, tokenizer):
try:
inputs = feature_extractor(images=image, return_tensors="pt")
if torch.cuda.is_available():
inputs = {k: v.to("cuda") for k, v in inputs.items()}
output = model.generate(**inputs, **MODEL_CONFIGS["ViT-GPT2"]["generate_params"])
caption = tokenizer.decode(output[0], skip_special_tokens=True)
return caption
except Exception as e:
return f"ViT-GPT2 model error: {str(e)}"
def get_git_caption(image, model, processor):
try:
inputs = processor(images=image, return_tensors="pt")
if torch.cuda.is_available():
inputs = {k: v.to("cuda") for k, v in inputs.items()}
output = model.generate(**inputs, **MODEL_CONFIGS["GIT"]["generate_params"])
caption = processor.decode(output[0], skip_special_tokens=True)
return caption
except Exception as e:
return f"GIT model error: {str(e)}"
CONTENT_CATEGORIES = [
"a portrait photograph", "a landscape photograph", "a wildlife photograph",
"an architectural photograph", "a street photograph", "a food photograph",
"a fashion photograph", "a sports photograph", "a macro photograph",
"a night photograph", "an aerial photograph", "an underwater photograph",
"a product photograph", "a documentary photograph", "a travel photograph",
"a black and white photograph", "an abstract photograph", "a concert photograph",
"a wedding photograph", "a nature photograph"
]
SCENE_ATTRIBUTES = [
"indoors", "outdoors", "daytime", "nighttime", "urban", "rural",
"beach", "mountains", "forest", "desert", "snowy", "rainy",
"foggy", "sunny", "crowded", "empty", "modern", "vintage",
"colorful", "minimalist"
]
STYLE_ATTRIBUTES = [
"professional", "casual", "artistic", "documentary", "aerial view",
"close-up", "wide-angle", "telephoto", "panoramic", "HDR",
"long exposure", "shallow depth of field", "silhouette", "motion blur"
]
def get_clip_caption(image, model, processor):
try:
content_inputs = processor(text=CONTENT_CATEGORIES, images=image, return_tensors="pt", padding=True)
if torch.cuda.is_available():
content_inputs = {k: v.to("cuda") for k, v in content_inputs.items() if torch.is_tensor(v)}
content_outputs = model(**content_inputs)
content_probs = content_outputs.logits_per_image.softmax(dim=1)[0]
top_content_probs, top_content_indices = torch.topk(content_probs, 2)
scene_inputs = processor(text=SCENE_ATTRIBUTES, images=image, return_tensors="pt", padding=True)
if torch.cuda.is_available():
scene_inputs = {k: v.to("cuda") for k, v in scene_inputs.items() if torch.is_tensor(v)}
scene_outputs = model(**scene_inputs)
scene_probs = scene_outputs.logits_per_image.softmax(dim=1)[0]
top_scene_probs, top_scene_indices = torch.topk(scene_probs, 2)
style_inputs = processor(text=STYLE_ATTRIBUTES, images=image, return_tensors="pt", padding=True)
if torch.cuda.is_available():
style_inputs = {k: v.to("cuda") for k, v in style_inputs.items() if torch.is_tensor(v)}
style_outputs = model(**style_inputs)
style_probs = style_outputs.logits_per_image.softmax(dim=1)[0]
top_style_probs, top_style_indices = torch.topk(style_probs, 1)
primary_content = CONTENT_CATEGORIES[top_content_indices[0].item()].replace("a ", "")
primary_scene = SCENE_ATTRIBUTES[top_scene_indices[0].item()]
primary_style = STYLE_ATTRIBUTES[top_style_indices[0].item()]
secondary_elements = []
if top_content_probs[1].item() > 0.15:
secondary_content = CONTENT_CATEGORIES[top_content_indices[1].item()].replace("a ", "")
secondary_elements.append(f"with elements of {secondary_content}")
if top_scene_probs[1].item() > 0.15:
secondary_scene = SCENE_ATTRIBUTES[top_scene_indices[1].item()]
secondary_elements.append(f"also showing {secondary_scene} characteristics")
detailed_caption = f"This appears to be {CONTENT_CATEGORIES[top_content_indices[0].item()]} captured in a {primary_scene} setting"
if secondary_elements:
detailed_caption += ", " + " ".join(secondary_elements)
detailed_caption += f". The image has a {primary_style} quality to it."
detailed_caption += f" (Primary content: {top_content_probs[0].item()*100:.1f}% confidence)"
return detailed_caption
except Exception as e:
return f"CLIP model error: {str(e)}"
# TRANSLATION FUNCTION
def batch_translate(texts, target_lang):
try:
translator = GoogleTranslator(source='en', target=target_lang)
return {key: translator.translate(value) for key, value in texts.items()}
except Exception as e:
return {key: f"Translation error: {str(e)}" for key in texts}
# MAIN APPLICATION
def main():
# Custom CSS for modern dark mode and no shapes under titles
st.markdown("""
<style>
body {
background-color: #0f0f23;
color: #d1d1e0;
}
.main-header {
font-size: 2.8rem;
color: #ff6b6b;
text-align: center;
margin-bottom: 1.5rem;
font-weight: 700;
text-shadow: 1px 1px 6px rgba(255, 107, 107, 0.4);
}
.sub-header {
font-size: 1.6rem;
color: #4ecdc4;
margin-bottom: 1rem;
font-weight: 600;
padding: 0;
background-color: transparent;
border: none;
}
.info-text {
font-size: 1.1rem;
background-color: #1a1a38;
padding: 15px;
border-radius: 8px;
margin-bottom: 15px;
border: 1px solid #2a2a52;
color: #a3b8ff;
}
.stButton>button {
width: 100%;
background-color: #ff6b6b;
color: #0f0f23;
border-radius: 6px;
padding: 10px;
font-size: 1.1rem;
font-weight: 500;
transition: background-color 0.3s, transform 0.2s;
}
.stButton>button:hover {
background-color: #ff8787;
transform: translateY(-2px);
}
.caption-card {
background-color: #1f2a44;
padding: 15px;
border-radius: 8px;
margin-bottom: 12px;
border: 1px solid #2a2a52;
box-shadow: 0 3px 10px rgba(0,0,0,0.3);
color: #d1d1e0;
font-size: 1.2rem;
transition: transform 0.2s;
}
.caption-card:hover {
transform: translateY(-2px);
}
.model-badge {
display: inline-block;
padding: 4px 10px;
border-radius: 12px;
font-size: 0.8rem;
margin-left: 10px;
background-color: #4ecdc4;
color: #0f0f23;
}
.caption-comparison {
background-color: #1a1a38;
padding: 15px;
border-radius: 8px;
margin-bottom: 15px;
border: 1px solid #2a2a52;
box-shadow: 0 3px 10px rgba(0,0,0,0.3);
}
.comparison-model-name {
font-weight: 600;
color: #ff6b6b;
margin-bottom: 6px;
font-size: 1.2rem;
}
.comparison-caption {
padding: 10px;
background-color: #1f2a44;
border-radius: 6px;
margin-bottom: 10px;
color: #d1d1e0;
font-size: 1.2rem;
border: 1px solid #2a2a52;
}
.tab-content {
padding: 15px 0;
}
.input-container {
background-color: transparent;
padding: 0;
margin-bottom: 15px;
border: none;
}
.image-container {
border-radius: 8px;
overflow: hidden;
box-shadow: 0 3px 10px rgba(0,0,0,0.3);
background-color: #0f0f23;
}
.model-selection-container {
background-color: #1a1a38;
padding: 15px;
border-radius: 8px;
border: 1px solid #2a2a52;
box-shadow: 0 3px 10px rgba(0,0,0,0.3);
}
.sidebar-content {
background-color: #1a1a38;
padding: 15px;
border-radius: 8px;
border: 1px solid #2a2a52;
margin-bottom: 15px;
}
.sidebar-header {
font-size: 1.8rem;
color: #ff6b6b;
font-weight: 700;
margin-bottom: 1rem;
}
.sidebar-section {
margin-bottom: 1.2rem;
}
.stExpander {
background-color: transparent;
border: none;
}
.stExpander > div > div {
background-color: #1a1a38;
border: 1px solid #2a2a52;
border-radius: 8px;
padding: 10px;
}
.stExpander > label {
color: #4ecdc4;
font-size: 1.2rem;
font-weight: 600;
background-color: transparent;
border: none;
}
.stRadio > div {
background-color: transparent;
border: none;
padding: 0;
margin: 0;
display: flex;
gap: 15px;
}
.stRadio > div > label {
color: #d1d1e0;
font-size: 1rem;
font-weight: 500;
background-color: #1f2a44;
padding: 8px 15px;
border-radius: 6px;
transition: background-color 0.3s;
}
.stRadio > div > label:hover {
background-color: #2a2a52;
}
.stFileUploader > div {
background-color: transparent;
}
.stTextInput > div {
background-color: #1f2a44;
border: 1px solid #2a2a52;
border-radius: 6px;
}
.stTextInput > div > div > input {
color: #d1d1e0;
}
</style>
""", unsafe_allow_html=True)
st.markdown('<h1 class="main-header">π AI Image Caption Generator</h1>', unsafe_allow_html=True)
st.markdown("""
<div class="info-text">
Upload an image or provide a URL to generate and translate captions using advanced AI models. Compare results across multiple models.
</div>
""", unsafe_allow_html=True)
# Sidebar
with st.sidebar:
st.markdown('<div class="sidebar-content">', unsafe_allow_html=True)
st.markdown('<h2 class="sidebar-header">π About This App</h2>', unsafe_allow_html=True)
st.markdown('<div class="sidebar-section">', unsafe_allow_html=True)
st.markdown("""
This NLP project uses cutting-edge AI models to generate and translate image captions with high accuracy.
""")
st.markdown('</div>', unsafe_allow_html=True)
st.markdown('<div class="sidebar-section">', unsafe_allow_html=True)
st.markdown('<h3 class="sub-header">π οΈ Models Used:</h3>')
st.markdown("""
- **BLIP**: Detailed and accurate descriptions
- **ViT-GPT2**: Fluent and consistent captions
- **GIT**: Contextually relevant descriptions
- **CLIP**: Comprehensive image analysis
""")
st.markdown('</div>', unsafe_allow_html=True)
st.markdown('<div class="sidebar-section">', unsafe_allow_html=True)
st.markdown('<h3 class="sub-header">π§ Technologies:</h3>')
st.markdown("""
- Streamlit
- Hugging Face Transformers
- PyTorch
- Google Translator API
""")
st.markdown('</div>', unsafe_allow_html=True)
with st.expander("π Model Comparison"):
st.markdown("""
| Model | Strengths | Best For |
|---------|----------------------|---------------------|
| BLIP | Detailed, accurate | General captioning |
| ViT-GPT2| Efficient, consistent| Quick descriptions |
| GIT | Contextually relevant| Scene understanding |
| CLIP | Classification-based | Image type analysis |
""")
st.markdown('</div>', unsafe_allow_html=True)
# Image Input Section (Full Width)
with st.container():
st.markdown('<h2 class="sub-header">π Image Input</h2>', unsafe_allow_html=True)
with st.container():
st.markdown('<div class="input-container">', unsafe_allow_html=True)
input_option = st.radio("Choose input method:", ["Upload Image", "Image URL"], horizontal=True)
image = None
if input_option == "Upload Image":
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"], label_visibility="collapsed")
if uploaded_file is not None:
try:
image = Image.open(uploaded_file).convert("RGB")
except Exception as e:
st.error(f"Error opening image: {e}")
else:
url = st.text_input("Enter Image URL", placeholder="https://example.com/image.jpg", label_visibility="collapsed")
if url:
try:
response = requests.get(url)
if response.status_code == 200 and 'image' in response.headers.get('Content-Type', ''):
image = Image.open(io.BytesIO(response.content)).convert("RGB")
else:
st.error("Invalid image URL or content type.")
except Exception as e:
st.error(f"Error loading image from URL: {e}")
st.markdown('</div>', unsafe_allow_html=True)
# Image Display and Model Selection (Two Columns)
if image:
with st.container():
col_image, col_models = st.columns([3, 2])
with col_image:
with st.spinner("Processing image..."):
quality_ok, quality_message = check_image_quality(image)
if not quality_ok:
st.warning(quality_message)
processed_image = preprocess_image(image)
st.markdown('<div class="image-container">', unsafe_allow_html=True)
st.image(processed_image, caption="Image for Captioning", use_container_width=True)
st.markdown('</div>', unsafe_allow_html=True)
with col_models:
st.markdown('<h2 class="sub-header">βοΈ Select Models</h2>', unsafe_allow_html=True)
with st.container():
st.markdown('<div class="model-selection-container">', unsafe_allow_html=True)
use_blip = st.checkbox("BLIP (Bootstrapping Language-Image Pre-training)", value=True)
use_vit_gpt2 = st.checkbox("ViT-GPT2 (Vision Transformer with GPT2)", value=True)
use_git = st.checkbox("GIT (Generative Image-to-text Transformer)", value=True)
use_clip = st.checkbox("CLIP (Contrastive Language-Image Pre-training)", value=True)
with st.expander("π§ Advanced Options"):
translation_language = st.selectbox(
"Translation Language",
["Arabic", "French", "Spanish", "Chinese", "Russian", "German"],
index=0
)
language_code_map = {
"Arabic": "ar", "French": "fr", "Spanish": "es",
"Chinese": "zh", "Russian": "ru", "German": "de"
}
selected_lang_code = language_code_map[translation_language]
st.markdown("<br>", unsafe_allow_html=True)
generate_button = st.button("Generate Captions", type="primary")
st.markdown('</div>', unsafe_allow_html=True)
# Generate Captions
if generate_button:
selected_models = []
if use_blip:
selected_models.append("BLIP")
if use_vit_gpt2:
selected_models.append("ViT-GPT2")
if use_git:
selected_models.append("GIT")
if use_clip:
selected_models.append("CLIP")
if not selected_models:
st.warning("Please select at least one model.")
else:
with st.spinner("Loading models..."):
models_data = {}
if use_blip:
models_data["BLIP"] = load_blip_model()
if use_vit_gpt2:
models_data["ViT-GPT2"] = load_vit_gpt2_model()
if use_git:
models_data["GIT"] = load_git_model()
if use_clip:
models_data["CLIP"] = load_clip_model()
with st.spinner("Generating captions... This may take a moment"):
captions = {}
with ThreadPoolExecutor(max_workers=min(len(selected_models), 4)) as executor:
future_to_model = {
executor.submit(generate_caption, processed_image, model_name, models_data): model_name
for model_name in selected_models
}
for future in future_to_model:
model_name = future_to_model[future]
try:
caption = future.result()
captions[model_name] = caption
except Exception as e:
captions[model_name] = f"Error generating caption: {str(e)}"
with st.spinner(f"Translating to {translation_language}..."):
translations = batch_translate(captions, selected_lang_code)
# Display Captions
st.markdown('<h2 class="sub-header">π Generated Captions</h2>', unsafe_allow_html=True)
model_colors = {
"BLIP": "#2a2a52",
"ViT-GPT2": "#2a3852",
"GIT": "#2a2a52",
"CLIP": "#2a3852"
}
tabs = st.tabs([f"{MODEL_CONFIGS[model_name]['icon']} {model_name}" for model_name in captions])
rtl_languages = ["ar"]
text_dir = "rtl" if selected_lang_code in rtl_languages else "ltr"
for i, model_name in enumerate(captions):
with tabs[i]:
st.markdown('<div class="tab-content">', unsafe_allow_html=True)
eng_col, trans_col = st.columns(2)
with eng_col:
st.markdown(f"**π¬π§ English Caption:**")
st.markdown(f"""
<div class="caption-card" style="background-color: {model_colors[model_name]};">
{captions[model_name]}
</div>
""", unsafe_allow_html=True)
with trans_col:
lang_flags = {
"ar": "πΈπ¦", "fr": "π«π·", "es": "πͺπΈ",
"zh": "π¨π³", "ru": "π·πΊ", "de": "π©πͺ"
}
st.markdown(f"**{lang_flags.get(selected_lang_code, 'π')} {translation_language} Translation:**")
st.markdown(f"""
<div class="caption-card" style="background-color: {model_colors[model_name]};" dir="{text_dir}">
{translations[model_name]}
</div>
""", unsafe_allow_html=True)
st.markdown('</div>', unsafe_allow_html=True)
with st.expander("βΉοΈ About this model"):
st.markdown(MODEL_CONFIGS[model_name]["description"])
# Caption Comparison
if len(captions) > 1:
with st.expander("π Compare All Captions", expanded=True):
st.markdown('<div class="caption-comparison">', unsafe_allow_html=True)
for model_name, caption in captions.items():
st.markdown(f"""
<div class="comparison-model-name">
{MODEL_CONFIGS[model_name]['icon']} {model_name}
</div>
<div class="comparison-caption" style="background-color: {model_colors[model_name]};">
{caption}
</div>
""", unsafe_allow_html=True)
st.markdown('</div>', unsafe_allow_html=True)
if __name__ == "__main__":
main() |