File size: 26,218 Bytes
f6dc68d
1472f98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6dc68d
1472f98
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
import streamlit as st
import torch
import numpy as np
from PIL import Image, ImageEnhance
import io
import requests
from transformers import (
    BlipForConditionalGeneration,
    BlipProcessor,
    VisionEncoderDecoderModel,
    ViTImageProcessor,
    AutoTokenizer,
    CLIPProcessor,
    CLIPModel,
    AutoModelForCausalLM,
    AutoProcessor
)
from deep_translator import GoogleTranslator
from scipy.ndimage import variance
from concurrent.futures import ThreadPoolExecutor

# CONFIGURATION
st.set_page_config(
    page_title="πŸ–ΌοΈ AI Image Caption Generator",
    layout="wide",
    initial_sidebar_state="expanded"
)

# Define model configurations
MODEL_CONFIGS = {
    "BLIP": {
        "name": "BLIP",
        "icon": "✍️",
        "description": "BLIP excels at generating detailed and accurate image descriptions using vision-language pre-training.",
        "generate_params": {"max_length": 50, "num_beams": 5, "min_length": 10, "top_p": 0.9, "repetition_penalty": 1.5}
    },
    "ViT-GPT2": {
        "name": "ViT-GPT2",
        "icon": "πŸ”Ž",
        "description": "ViT-GPT2 combines Vision Transformer with GPT2 for fluent and consistent image captions.",
        "generate_params": {"max_length": 50, "num_beams": 5, "min_length": 10, "repetition_penalty": 1.5}
    },
    "GIT": {
        "name": "GIT-base",
        "icon": "πŸ“ˆ",
        "description": "GIT generates contextually relevant captions with a focus on scene understanding.",
        "generate_params": {"max_length": 50, "num_beams": 4, "min_length": 8, "repetition_penalty": 1.5}
    },
    "CLIP": {
        "name": "CLIP",
        "icon": "🎨",
        "description": "CLIP provides comprehensive image analysis with confidence scores across content, scene, and style.",
    }
}

# LOADING FUNCTIONS
@st.cache_resource
def load_blip_model():
    processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
    model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large")
    if torch.cuda.is_available():
        model = model.to("cuda")
    return model, processor

@st.cache_resource
def load_vit_gpt2_model():
    model = VisionEncoderDecoderModel.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
    feature_extractor = ViTImageProcessor.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
    tokenizer = AutoTokenizer.from_pretrained("nlpconnect/vit-gpt2-image-captioning")
    if torch.cuda.is_available():
        model = model.to("cuda")
    return model, feature_extractor, tokenizer

@st.cache_resource
def load_git_model():
    processor = AutoProcessor.from_pretrained("microsoft/git-base")
    model = AutoModelForCausalLM.from_pretrained("microsoft/git-base")
    if torch.cuda.is_available():
        model = model.to("cuda")
    return model, processor

@st.cache_resource
def load_clip_model():
    processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14")
    model = CLIPModel.from_pretrained("openai/clip-vit-large-patch14")
    if torch.cuda.is_available():
        model = model.to("cuda")
    return model, processor

# IMAGE PROCESSING
def preprocess_image(image):
    max_size = 1024
    if max(image.size) > max_size:
        ratio = max_size / max(image.size)
        new_size = (int(image.size[0] * ratio), int(image.size[1] * ratio))
        image = image.resize(new_size, Image.LANCZOS)
    enhancer = ImageEnhance.Contrast(image)
    image = enhancer.enhance(1.2)
    img_array = np.array(image.convert('L'))
    if np.mean(img_array) < 100:
        brightness_enhancer = ImageEnhance.Brightness(image)
        image = brightness_enhancer.enhance(1.3)
    return image

def check_image_quality(image):
    if image.width < 200 or image.height < 200:
        return False, "Image is too small for accurate captioning. Consider using a larger image."
    img_array = np.array(image.convert('L'))
    if variance(img_array) < 100:
        return False, "Image may be too blurry for accurate captioning. Consider using a clearer image."
    return True, "Image quality is sufficient for captioning."

# CAPTION GENERATION FUNCTIONS
def generate_caption(image, model_name, models_data):
    if model_name == "BLIP":
        model, processor = models_data[model_name]
        return get_blip_caption(image, model, processor)
    elif model_name == "ViT-GPT2":
        model, feature_extractor, tokenizer = models_data[model_name]
        return get_vit_gpt2_caption(image, model, feature_extractor, tokenizer)
    elif model_name == "GIT":
        model, processor = models_data[model_name]
        return get_git_caption(image, model, processor)
    elif model_name == "CLIP":
        model, processor = models_data[model_name]
        return get_clip_caption(image, model, processor)
    return "Model not supported"

def get_blip_caption(image, model, processor):
    try:
        inputs = processor(image, return_tensors="pt")
        if torch.cuda.is_available():
            inputs = {k: v.to("cuda") for k, v in inputs.items()}
        output = model.generate(**inputs, **MODEL_CONFIGS["BLIP"]["generate_params"])
        caption = processor.decode(output[0], skip_special_tokens=True)
        return caption
    except Exception as e:
        return f"BLIP model error: {str(e)}"

def get_vit_gpt2_caption(image, model, feature_extractor, tokenizer):
    try:
        inputs = feature_extractor(images=image, return_tensors="pt")
        if torch.cuda.is_available():
            inputs = {k: v.to("cuda") for k, v in inputs.items()}
        output = model.generate(**inputs, **MODEL_CONFIGS["ViT-GPT2"]["generate_params"])
        caption = tokenizer.decode(output[0], skip_special_tokens=True)
        return caption
    except Exception as e:
        return f"ViT-GPT2 model error: {str(e)}"

def get_git_caption(image, model, processor):
    try:
        inputs = processor(images=image, return_tensors="pt")
        if torch.cuda.is_available():
            inputs = {k: v.to("cuda") for k, v in inputs.items()}
        output = model.generate(**inputs, **MODEL_CONFIGS["GIT"]["generate_params"])
        caption = processor.decode(output[0], skip_special_tokens=True)
        return caption
    except Exception as e:
        return f"GIT model error: {str(e)}"

CONTENT_CATEGORIES = [
    "a portrait photograph", "a landscape photograph", "a wildlife photograph", 
    "an architectural photograph", "a street photograph", "a food photograph",
    "a fashion photograph", "a sports photograph", "a macro photograph",
    "a night photograph", "an aerial photograph", "an underwater photograph",
    "a product photograph", "a documentary photograph", "a travel photograph",
    "a black and white photograph", "an abstract photograph", "a concert photograph",
    "a wedding photograph", "a nature photograph"
]

SCENE_ATTRIBUTES = [
    "indoors", "outdoors", "daytime", "nighttime", "urban", "rural",
    "beach", "mountains", "forest", "desert", "snowy", "rainy",
    "foggy", "sunny", "crowded", "empty", "modern", "vintage",
    "colorful", "minimalist"
]

STYLE_ATTRIBUTES = [
    "professional", "casual", "artistic", "documentary", "aerial view",
    "close-up", "wide-angle", "telephoto", "panoramic", "HDR",
    "long exposure", "shallow depth of field", "silhouette", "motion blur"
]

def get_clip_caption(image, model, processor):
    try:
        content_inputs = processor(text=CONTENT_CATEGORIES, images=image, return_tensors="pt", padding=True)
        if torch.cuda.is_available():
            content_inputs = {k: v.to("cuda") for k, v in content_inputs.items() if torch.is_tensor(v)}
        content_outputs = model(**content_inputs)
        content_probs = content_outputs.logits_per_image.softmax(dim=1)[0]
        top_content_probs, top_content_indices = torch.topk(content_probs, 2)
        
        scene_inputs = processor(text=SCENE_ATTRIBUTES, images=image, return_tensors="pt", padding=True)
        if torch.cuda.is_available():
            scene_inputs = {k: v.to("cuda") for k, v in scene_inputs.items() if torch.is_tensor(v)}
        scene_outputs = model(**scene_inputs)
        scene_probs = scene_outputs.logits_per_image.softmax(dim=1)[0]
        top_scene_probs, top_scene_indices = torch.topk(scene_probs, 2)
        
        style_inputs = processor(text=STYLE_ATTRIBUTES, images=image, return_tensors="pt", padding=True)
        if torch.cuda.is_available():
            style_inputs = {k: v.to("cuda") for k, v in style_inputs.items() if torch.is_tensor(v)}
        style_outputs = model(**style_inputs)
        style_probs = style_outputs.logits_per_image.softmax(dim=1)[0]
        top_style_probs, top_style_indices = torch.topk(style_probs, 1)
        
        primary_content = CONTENT_CATEGORIES[top_content_indices[0].item()].replace("a ", "")
        primary_scene = SCENE_ATTRIBUTES[top_scene_indices[0].item()]
        primary_style = STYLE_ATTRIBUTES[top_style_indices[0].item()]
        
        secondary_elements = []
        if top_content_probs[1].item() > 0.15:
            secondary_content = CONTENT_CATEGORIES[top_content_indices[1].item()].replace("a ", "")
            secondary_elements.append(f"with elements of {secondary_content}")
        if top_scene_probs[1].item() > 0.15:
            secondary_scene = SCENE_ATTRIBUTES[top_scene_indices[1].item()]
            secondary_elements.append(f"also showing {secondary_scene} characteristics")
        
        detailed_caption = f"This appears to be {CONTENT_CATEGORIES[top_content_indices[0].item()]} captured in a {primary_scene} setting"
        if secondary_elements:
            detailed_caption += ", " + " ".join(secondary_elements)
        detailed_caption += f". The image has a {primary_style} quality to it."
        detailed_caption += f" (Primary content: {top_content_probs[0].item()*100:.1f}% confidence)"
        return detailed_caption
    except Exception as e:
        return f"CLIP model error: {str(e)}"

# TRANSLATION FUNCTION
def batch_translate(texts, target_lang):
    try:
        translator = GoogleTranslator(source='en', target=target_lang)
        return {key: translator.translate(value) for key, value in texts.items()}
    except Exception as e:
        return {key: f"Translation error: {str(e)}" for key in texts}

# MAIN APPLICATION
def main():
    # Custom CSS for modern dark mode and no shapes under titles
    st.markdown("""
    <style>
    body {
        background-color: #0f0f23;
        color: #d1d1e0;
    }
    .main-header {
        font-size: 2.8rem;
        color: #ff6b6b;
        text-align: center;
        margin-bottom: 1.5rem;
        font-weight: 700;
        text-shadow: 1px 1px 6px rgba(255, 107, 107, 0.4);
    }
    .sub-header {
        font-size: 1.6rem;
        color: #4ecdc4;
        margin-bottom: 1rem;
        font-weight: 600;
        padding: 0;
        background-color: transparent;
        border: none;
    }
    .info-text {
        font-size: 1.1rem;
        background-color: #1a1a38;
        padding: 15px;
        border-radius: 8px;
        margin-bottom: 15px;
        border: 1px solid #2a2a52;
        color: #a3b8ff;
    }
    .stButton>button {
        width: 100%;
        background-color: #ff6b6b;
        color: #0f0f23;
        border-radius: 6px;
        padding: 10px;
        font-size: 1.1rem;
        font-weight: 500;
        transition: background-color 0.3s, transform 0.2s;
    }
    .stButton>button:hover {
        background-color: #ff8787;
        transform: translateY(-2px);
    }
    .caption-card {
        background-color: #1f2a44;
        padding: 15px;
        border-radius: 8px;
        margin-bottom: 12px;
        border: 1px solid #2a2a52;
        box-shadow: 0 3px 10px rgba(0,0,0,0.3);
        color: #d1d1e0;
        font-size: 1.2rem;
        transition: transform 0.2s;
    }
    .caption-card:hover {
        transform: translateY(-2px);
    }
    .model-badge {
        display: inline-block;
        padding: 4px 10px;
        border-radius: 12px;
        font-size: 0.8rem;
        margin-left: 10px;
        background-color: #4ecdc4;
        color: #0f0f23;
    }
    .caption-comparison {
        background-color: #1a1a38;
        padding: 15px;
        border-radius: 8px;
        margin-bottom: 15px;
        border: 1px solid #2a2a52;
        box-shadow: 0 3px 10px rgba(0,0,0,0.3);
    }
    .comparison-model-name {
        font-weight: 600;
        color: #ff6b6b;
        margin-bottom: 6px;
        font-size: 1.2rem;
    }
    .comparison-caption {
        padding: 10px;
        background-color: #1f2a44;
        border-radius: 6px;
        margin-bottom: 10px;
        color: #d1d1e0;
        font-size: 1.2rem;
        border: 1px solid #2a2a52;
    }
    .tab-content {
        padding: 15px 0;
    }
    .input-container {
        background-color: transparent;
        padding: 0;
        margin-bottom: 15px;
        border: none;
    }
    .image-container {
        border-radius: 8px;
        overflow: hidden;
        box-shadow: 0 3px 10px rgba(0,0,0,0.3);
        background-color: #0f0f23;
    }
    .model-selection-container {
        background-color: #1a1a38;
        padding: 15px;
        border-radius: 8px;
        border: 1px solid #2a2a52;
        box-shadow: 0 3px 10px rgba(0,0,0,0.3);
    }
    .sidebar-content {
        background-color: #1a1a38;
        padding: 15px;
        border-radius: 8px;
        border: 1px solid #2a2a52;
        margin-bottom: 15px;
    }
    .sidebar-header {
        font-size: 1.8rem;
        color: #ff6b6b;
        font-weight: 700;
        margin-bottom: 1rem;
    }
    .sidebar-section {
        margin-bottom: 1.2rem;
    }
    .stExpander {
        background-color: transparent;
        border: none;
    }
    .stExpander > div > div {
        background-color: #1a1a38;
        border: 1px solid #2a2a52;
        border-radius: 8px;
        padding: 10px;
    }
    .stExpander > label {
        color: #4ecdc4;
        font-size: 1.2rem;
        font-weight: 600;
        background-color: transparent;
        border: none;
    }
    .stRadio > div {
        background-color: transparent;
        border: none;
        padding: 0;
        margin: 0;
        display: flex;
        gap: 15px;
    }
    .stRadio > div > label {
        color: #d1d1e0;
        font-size: 1rem;
        font-weight: 500;
        background-color: #1f2a44;
        padding: 8px 15px;
        border-radius: 6px;
        transition: background-color 0.3s;
    }
    .stRadio > div > label:hover {
        background-color: #2a2a52;
    }
    .stFileUploader > div {
        background-color: transparent;
    }
    .stTextInput > div {
        background-color: #1f2a44;
        border: 1px solid #2a2a52;
        border-radius: 6px;
    }
    .stTextInput > div > div > input {
        color: #d1d1e0;
    }
    </style>
    """, unsafe_allow_html=True)

    st.markdown('<h1 class="main-header">🌌 AI Image Caption Generator</h1>', unsafe_allow_html=True)
    
    st.markdown("""
    <div class="info-text">
        Upload an image or provide a URL to generate and translate captions using advanced AI models. Compare results across multiple models.
    </div>
    """, unsafe_allow_html=True)

    # Sidebar
    with st.sidebar:
        st.markdown('<div class="sidebar-content">', unsafe_allow_html=True)
        st.markdown('<h2 class="sidebar-header">πŸ“˜ About This App</h2>', unsafe_allow_html=True)
        
        st.markdown('<div class="sidebar-section">', unsafe_allow_html=True)
        st.markdown("""
        This NLP project uses cutting-edge AI models to generate and translate image captions with high accuracy.
        """)
        st.markdown('</div>', unsafe_allow_html=True)

        st.markdown('<div class="sidebar-section">', unsafe_allow_html=True)
        st.markdown('<h3 class="sub-header">πŸ› οΈ Models Used:</h3>')
        st.markdown("""
        - **BLIP**: Detailed and accurate descriptions  
        - **ViT-GPT2**: Fluent and consistent captions  
        - **GIT**: Contextually relevant descriptions  
        - **CLIP**: Comprehensive image analysis  
        """)
        st.markdown('</div>', unsafe_allow_html=True)

        st.markdown('<div class="sidebar-section">', unsafe_allow_html=True)
        st.markdown('<h3 class="sub-header">πŸ”§ Technologies:</h3>')
        st.markdown("""
        - Streamlit  
        - Hugging Face Transformers  
        - PyTorch  
        - Google Translator API  
        """)
        st.markdown('</div>', unsafe_allow_html=True)

        with st.expander("πŸ“Š Model Comparison"):
            st.markdown("""
            | Model   | Strengths            | Best For            |
            |---------|----------------------|---------------------|
            | BLIP    | Detailed, accurate   | General captioning  |
            | ViT-GPT2| Efficient, consistent| Quick descriptions  |
            | GIT     | Contextually relevant| Scene understanding |
            | CLIP    | Classification-based | Image type analysis |
            """)
        st.markdown('</div>', unsafe_allow_html=True)

    # Image Input Section (Full Width)
    with st.container():
        st.markdown('<h2 class="sub-header">πŸŒ„ Image Input</h2>', unsafe_allow_html=True)
        with st.container():
            st.markdown('<div class="input-container">', unsafe_allow_html=True)
            input_option = st.radio("Choose input method:", ["Upload Image", "Image URL"], horizontal=True)
            image = None

            if input_option == "Upload Image":
                uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"], label_visibility="collapsed")
                if uploaded_file is not None:
                    try:
                        image = Image.open(uploaded_file).convert("RGB")
                    except Exception as e:
                        st.error(f"Error opening image: {e}")
            else:
                url = st.text_input("Enter Image URL", placeholder="https://example.com/image.jpg", label_visibility="collapsed")
                if url:
                    try:
                        response = requests.get(url)
                        if response.status_code == 200 and 'image' in response.headers.get('Content-Type', ''):
                            image = Image.open(io.BytesIO(response.content)).convert("RGB")
                        else:
                            st.error("Invalid image URL or content type.")
                    except Exception as e:
                        st.error(f"Error loading image from URL: {e}")
            st.markdown('</div>', unsafe_allow_html=True)

    # Image Display and Model Selection (Two Columns)
    if image:
        with st.container():
            col_image, col_models = st.columns([3, 2])
            
            with col_image:
                with st.spinner("Processing image..."):
                    quality_ok, quality_message = check_image_quality(image)
                    if not quality_ok:
                        st.warning(quality_message)
                    processed_image = preprocess_image(image)
                    st.markdown('<div class="image-container">', unsafe_allow_html=True)
                    st.image(processed_image, caption="Image for Captioning", use_container_width=True)
                    st.markdown('</div>', unsafe_allow_html=True)

            with col_models:
                st.markdown('<h2 class="sub-header">βš™οΈ Select Models</h2>', unsafe_allow_html=True)
                with st.container():
                    st.markdown('<div class="model-selection-container">', unsafe_allow_html=True)
                    use_blip = st.checkbox("BLIP (Bootstrapping Language-Image Pre-training)", value=True)
                    use_vit_gpt2 = st.checkbox("ViT-GPT2 (Vision Transformer with GPT2)", value=True)
                    use_git = st.checkbox("GIT (Generative Image-to-text Transformer)", value=True)
                    use_clip = st.checkbox("CLIP (Contrastive Language-Image Pre-training)", value=True)
                    
                    with st.expander("πŸ”§ Advanced Options"):
                        translation_language = st.selectbox(
                            "Translation Language",
                            ["Arabic", "French", "Spanish", "Chinese", "Russian", "German"],
                            index=0
                        )
                        language_code_map = {
                            "Arabic": "ar", "French": "fr", "Spanish": "es",
                            "Chinese": "zh", "Russian": "ru", "German": "de"
                        }
                        selected_lang_code = language_code_map[translation_language]
                    
                    st.markdown("<br>", unsafe_allow_html=True)
                    generate_button = st.button("Generate Captions", type="primary")
                    st.markdown('</div>', unsafe_allow_html=True)

        # Generate Captions
        if generate_button:
            selected_models = []
            if use_blip:
                selected_models.append("BLIP")
            if use_vit_gpt2:
                selected_models.append("ViT-GPT2")
            if use_git:
                selected_models.append("GIT")
            if use_clip:
                selected_models.append("CLIP")
            
            if not selected_models:
                st.warning("Please select at least one model.")
            else:
                with st.spinner("Loading models..."):
                    models_data = {}
                    if use_blip:
                        models_data["BLIP"] = load_blip_model()
                    if use_vit_gpt2:
                        models_data["ViT-GPT2"] = load_vit_gpt2_model()
                    if use_git:
                        models_data["GIT"] = load_git_model()
                    if use_clip:
                        models_data["CLIP"] = load_clip_model()
                
                with st.spinner("Generating captions... This may take a moment"):
                    captions = {}
                    with ThreadPoolExecutor(max_workers=min(len(selected_models), 4)) as executor:
                        future_to_model = {
                            executor.submit(generate_caption, processed_image, model_name, models_data): model_name 
                            for model_name in selected_models
                        }
                        for future in future_to_model:
                            model_name = future_to_model[future]
                            try:
                                caption = future.result()
                                captions[model_name] = caption
                            except Exception as e:
                                captions[model_name] = f"Error generating caption: {str(e)}"
                
                with st.spinner(f"Translating to {translation_language}..."):
                    translations = batch_translate(captions, selected_lang_code)

                # Display Captions
                st.markdown('<h2 class="sub-header">πŸ“ Generated Captions</h2>', unsafe_allow_html=True)
                
                model_colors = {
                    "BLIP": "#2a2a52",
                    "ViT-GPT2": "#2a3852",
                    "GIT": "#2a2a52",
                    "CLIP": "#2a3852"
                }
                
                tabs = st.tabs([f"{MODEL_CONFIGS[model_name]['icon']} {model_name}" for model_name in captions])
                rtl_languages = ["ar"]
                text_dir = "rtl" if selected_lang_code in rtl_languages else "ltr"
                
                for i, model_name in enumerate(captions):
                    with tabs[i]:
                        st.markdown('<div class="tab-content">', unsafe_allow_html=True)
                        eng_col, trans_col = st.columns(2)
                        with eng_col:
                            st.markdown(f"**πŸ‡¬πŸ‡§ English Caption:**")
                            st.markdown(f"""
                            <div class="caption-card" style="background-color: {model_colors[model_name]};">
                            {captions[model_name]}
                            </div>
                            """, unsafe_allow_html=True)
                        with trans_col:
                            lang_flags = {
                                "ar": "πŸ‡ΈπŸ‡¦", "fr": "πŸ‡«πŸ‡·", "es": "πŸ‡ͺπŸ‡Έ",
                                "zh": "πŸ‡¨πŸ‡³", "ru": "πŸ‡·πŸ‡Ί", "de": "πŸ‡©πŸ‡ͺ"
                            }
                            st.markdown(f"**{lang_flags.get(selected_lang_code, '🌐')} {translation_language} Translation:**")
                            st.markdown(f"""
                            <div class="caption-card" style="background-color: {model_colors[model_name]};" dir="{text_dir}">
                            {translations[model_name]}
                            </div>
                            """, unsafe_allow_html=True)
                        st.markdown('</div>', unsafe_allow_html=True)
                        with st.expander("ℹ️ About this model"):
                            st.markdown(MODEL_CONFIGS[model_name]["description"])

                # Caption Comparison
                if len(captions) > 1:
                    with st.expander("πŸ” Compare All Captions", expanded=True):
                        st.markdown('<div class="caption-comparison">', unsafe_allow_html=True)
                        for model_name, caption in captions.items():
                            st.markdown(f"""
                            <div class="comparison-model-name">
                                {MODEL_CONFIGS[model_name]['icon']} {model_name}
                            </div>
                            <div class="comparison-caption" style="background-color: {model_colors[model_name]};">
                                {caption}
                            </div>
                            """, unsafe_allow_html=True)
                        st.markdown('</div>', unsafe_allow_html=True)

if __name__ == "__main__":
    main()