File size: 11,818 Bytes
bbbdd41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6df37ad
 
bbbdd41
 
 
 
 
 
 
 
 
 
 
6df37ad
bbbdd41
 
 
 
 
 
ca0909d
bbbdd41
 
 
 
ca0909d
bbbdd41
 
 
 
ca0909d
bbbdd41
 
 
 
ca0909d
bbbdd41
 
 
 
ca0909d
bbbdd41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9168503
bbbdd41
 
 
 
 
 
 
 
 
 
 
 
 
 
6df37ad
bbbdd41
 
 
 
 
ecdf6f5
7d83537
bbb267c
ecdf6f5
 
56ca7b3
ecdf6f5
 
 
bbbdd41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
from typing import List, Tuple
import gradio as gr
from ultralytics import YOLO
import cv2
import os
import torch
import numpy as np
import time
import json
import json

# Check device availability
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# Categories for each model
with open('categories.json', 'r', encoding='utf-8') as f1:
    categories = json.load(f1)

# Loading the Category Synopsis
with open('categories_synopsis.json', 'r', encoding='utf-8') as f2:
    categories_synopsis = json.load(f2)

# Loading the Parishes
with open('parishes.json', 'r', encoding='utf-8') as f3:
    parishes = json.load(f3)

# Default model
default_model = "Model v2"

# Model URLs
models = {
    "Model v1": YOLO("https://huggingface.co/mbar0075/Maltese-Christian-Statue-Classification/resolve/main/MCS-Classify.pt").to(device),
    "Model v2": YOLO("https://huggingface.co/mbar0075/Maltese-Christian-Statue-Classification/resolve/main/MCS-Classifyv2.pt").to(device),
    "Model v3 (Fast)": YOLO("https://huggingface.co/mbar0075/Maltese-Christian-Statue-Classification/resolve/main/MCS-Classifyv3-Fast.pt").to(device),
    "Model v3 (Accurate)": YOLO("https://huggingface.co/mbar0075/Maltese-Christian-Statue-Classification/resolve/main/MCS-Classifyv3-Accurate.pt").to(device)
}

parish_model_paths = {
    "Model v1": "https://huggingface.co/mbar0075/Maltese-Christian-Statue-Classification/resolve/main/MCS-Classify-Parishv1.pt",
    "Model v2": "https://huggingface.co/mbar0075/Maltese-Christian-Statue-Classification/resolve/main/MCS-Classify-Parishv2.pt"
}

# Loading the respective Parishes Model and Categories
parishes_model_path = "Model v2"
parishes_model = YOLO(parish_model_paths[parishes_model_path]).to(device)
parishes_categories = parishes[parishes_model_path]

def predict_image(image, model_name: str, size=(244, 244)) -> List[Tuple[str, str, float]]:
    """Predict the class of a given image and return sorted probabilities with categories."""
    if model_name is None:
        model_name = default_model
    
    image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
    resized_img = cv2.resize(image, size)
    resized_img = resized_img / 255.0  # Normalize
    resized_img = resized_img.transpose(2, 0, 1)  # Convert to (C, H, W)
    resized_img = resized_img[None, ...]  # Add batch dimension

    # Run prediction
    model = models.get(model_name)
    if model is None:
        raise ValueError(f"Model '{model_name}' not found.")

    results = model.predict(image)
    pred_probs = results[0].probs.data.cpu().numpy()

    # Sort predictions by probability
    sorted_indices = np.argsort(pred_probs)[::-1]  # Descending order
    english_categories = categories[model_name]["english"]
    maltese_categories = categories[model_name]["maltese"]
    sorted_predictions = [
        (
            english_categories[str(i)],
            maltese_categories[str(i)],
            round(pred_probs[i] * 100, 2)  # Convert to percentage
        )
        for i in sorted_indices
    ]

    return sorted_predictions

def predict_parish(image, size=(244, 244)) -> List[Tuple[str, float]]:
    """Predict the parish of a given image and return sorted probabilities with categories."""
    image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
    resized_img = cv2.resize(image, size)
    resized_img = resized_img / 255.0  # Normalize
    resized_img = resized_img.transpose(2, 0, 1)  # Convert to (C, H, W)
    resized_img = resized_img[None, ...]  # Add batch dimension

    # Run prediction
    results = parishes_model.predict(image)
    pred_probs = results[0].probs.data.cpu().numpy()

    # Sort predictions by probability
    sorted_indices = np.argsort(pred_probs)[::-1]  # Descending order
    sorted_predictions = [
        (
            parishes_categories[str(i)],
            round(pred_probs[i] * 100, 2)  # Convert to percentage
        )
        for i in sorted_indices
    ]

    return sorted_predictions

def classify_image(input_image, model_name):
    # Check if model_name is None
    if model_name is None:
        model_name = default_model

    start_time = time.time()

    # Get predictions from the model
    predictions = predict_image(input_image, model_name)

    # Predict the parish
    parish_predictions = predict_parish(input_image)
    
    # Format predictions into a dictionary with confidence scores
    formatted_predictions = {
        f"{label} / {maltese_label}": confidence / 100
        for label, maltese_label, confidence in predictions[:5]
    }

    # Format parish predictions into a dictionary with confidence scores
    formatted_parish_predictions = {
        f"{label}": confidence / 100
        for label, confidence in parish_predictions[:5]
    }

    # Modify the first formatted prediction to include "From the Parish of ..."
    first_label, first_confidence = parish_predictions[0]
    formatted_parish_predictions[f"From the Parish of / Mill-Parroċċa ta' {first_label}"] = formatted_parish_predictions.pop(first_label)

    # Get the label with the highest confidence
    highest_confidence_label = predictions[0][0]  # Assuming predictions are sorted by confidence
    highest_confidence_synopsis = categories_synopsis.get(highest_confidence_label, "No synopsis available.")

    # Calculate FPS
    end_time = time.time()
    elapsed_time = end_time - start_time
    fps = 1.0 / elapsed_time

    return (
        formatted_predictions,
        formatted_parish_predictions,
        highest_confidence_synopsis,
        round(fps, 2)
    )

# Metadata
title = "Maltese Christian Statue Classifier ✝"
description_small = (
    "Identify Maltese Christian Statues from Images using AI"
)
description = (
    "Simply upload an image and let the model do the rest!"
)
article = (
    # "The YOLO classification models are trained on datasets of Maltese Christian statues and religious figures. "
    # "The MCS Dataset is open-source and available for access through https://github.com/mbar0075/Maltese-Christian-Statue-Classifier.\n"
    "© Matthias Bartolo 2025. Licensed under the MIT License."
    # "Descriptions by Miriam Bartolo Abela." 
)

# Load examples
example_folder = "examples"  # Single folder for all examples
examples = [[f"{example_folder}/{example}"] for example in os.listdir(example_folder) if example.endswith((".png", ".jpg", ".jpeg"))]

# For the list of examples, add the model name
for example in examples:
    example.append(default_model)

css = """
    <style>
        body {
            background-color: #2D1B5A !important;
            color: white !important;
        }
        h1 {
            text-align: center !important;
            font-size: 3.5em !important;
            color: #6A0DAD !important; /* Dark Purple */
        }
        h2 {
            text-align: center !important;
            font-size: 2.5em !important;
            color: #B084E9 !important; /* Lighter Purple */
        }
        h3 {
            text-align: center !important;
            font-size: 2em !important;
            color: white !important; /* White */
        }
        h4 {
            text-align: center !important;
            font-size: 1.5em !important;
            color: white !important; /* White */
        }
        h5 {
            text-align: left !important;
            font-size: 1.5em !important;
            color: white !important; /* White */
            font-weight: bold !important;
            margin-top: 50px !important;
        }
        .dataset-section {
            text-align: center !important;
            font-size: 2em !important;
            margin-top: 20px !important;
        }
        .dataset-section a {
            color: #4A90E2 !important;
            text-decoration: none !important;
            font-weight: bold !important;
        }
        .dataset-section a:hover {
            text-decoration: underline !important;
        }
        #links {
            text-align: center !important;
            font-size: 2em !important;
        }
        #links a {
            color: #93B7E9 !important;
            text-decoration: none !important;
        }
        #links a:hover {
            text-decoration: underline !important;
        }
        .example-section.show {
            display: block !important;
        }
        .example-section.hide {
            display: none !important;
        }
        .example-section {
            text-align: center !important;
            font-size: 1em !important;
            margin-top: 20px !important;
            margin-bottom: 20px !important;
        }
        .gr-accordion-header {
            font-weight: bold !important;
        }
    </style>
"""

# Create the Gradio demo using Blocks
with gr.Blocks(theme=gr.themes.Soft()) as demo:
    # Inject custom CSS into the interface using gr.HTML
    gr.HTML(css)
    
    with gr.Row():
        gr.Markdown(f"# {title}")
    
    with gr.Row():
        gr.Markdown(f"## {description_small}")

    with gr.Row():
        gr.Markdown(f"### {description}")
    
    with gr.Row():
        gr.Markdown(
            "### <a href='https://github.com/mbar0075/Maltese-Christian-Statue-Classifier/blob/main/Maltese%20Christian%20Statue%20Classification%20presentation.pdf'> Presentation</a>   | <a href='https://github.com/mbar0075/Maltese-Christian-Statue-Classifier'> Code </a>"
        )

    # Path to your local image
    header_path = os.path.join("header", "1.jpg")

    # Print an image
    with gr.Row():# For images needs to be HTML
        gr.HTML("""
            <div style="text-align: center;">
                <h5 style="margin-bottom: 10px;">Explanation of the Process:</h5>
                <img src="https://huggingface.co/spaces/mbar0075/Maltese-Christian-Statue-Classification/resolve/main/header_image.png" alt="Header Explanation" style="width: 100%; height: auto; margin-bottom: 20px;">
                <h5 style="margin-top: 10px;">Try It Out Yourself:</h5>
            </div>
        """)

    
    with gr.Row():
        # Left Column (Image and Dropdown)
        with gr.Column(scale=2):
            input_image = gr.Image(type="pil", label="Upload an image", interactive=True)
            model_dropdown = gr.Dropdown(
                choices=list(models.keys()),
                value=default_model,
                label="Select Model",
                interactive=True
            )
            
        # Right Column (Predictions)
        with gr.Column(scale=2):
            output_predictions = gr.Label(num_top_classes=5, label="Predictions (English / Maltese)")
            output_parish_predictions = gr.Label(num_top_classes=5, label="Parish Predictions")
            output_fps = gr.Number(label="Prediction speed (FPS)")

    # Predictions in the same row
    with gr.Row():
        # Middle (Synopsis)
        output_synopsis = gr.Textbox(label="Synopsis / Aktar Tagħrif")
    
    with gr.Row():
        # Clear button
        clear_button = gr.ClearButton([input_image, model_dropdown, output_predictions, output_parish_predictions, output_synopsis, output_fps])

        # Call the classify_image function
        gr.Button("Classify").click(
            classify_image, 
            inputs=[input_image, model_dropdown], 
            outputs=[output_predictions, output_parish_predictions, output_synopsis, output_fps]
        )
    
    # with gr.Row(elem_id="Examples"):
    with gr.Accordion("Try Out Some Examples / Prova Xi Eżempji", open=False, elem_classes="example-section"):  # open=False keeps it collapsed initially
        gr.Examples(
            examples=examples,  # The list of examples
            inputs=[input_image, model_dropdown]  # Inputs to use the examples with
        )

    with gr.Row():
        gr.Markdown(f"#### {article}")

# Launch the Gradio demo
demo.launch()