File size: 11,818 Bytes
bbbdd41 6df37ad bbbdd41 6df37ad bbbdd41 ca0909d bbbdd41 ca0909d bbbdd41 ca0909d bbbdd41 ca0909d bbbdd41 ca0909d bbbdd41 9168503 bbbdd41 6df37ad bbbdd41 ecdf6f5 7d83537 bbb267c ecdf6f5 56ca7b3 ecdf6f5 bbbdd41 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 |
from typing import List, Tuple
import gradio as gr
from ultralytics import YOLO
import cv2
import os
import torch
import numpy as np
import time
import json
import json
# Check device availability
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Categories for each model
with open('categories.json', 'r', encoding='utf-8') as f1:
categories = json.load(f1)
# Loading the Category Synopsis
with open('categories_synopsis.json', 'r', encoding='utf-8') as f2:
categories_synopsis = json.load(f2)
# Loading the Parishes
with open('parishes.json', 'r', encoding='utf-8') as f3:
parishes = json.load(f3)
# Default model
default_model = "Model v2"
# Model URLs
models = {
"Model v1": YOLO("https://huggingface.co/mbar0075/Maltese-Christian-Statue-Classification/resolve/main/MCS-Classify.pt").to(device),
"Model v2": YOLO("https://huggingface.co/mbar0075/Maltese-Christian-Statue-Classification/resolve/main/MCS-Classifyv2.pt").to(device),
"Model v3 (Fast)": YOLO("https://huggingface.co/mbar0075/Maltese-Christian-Statue-Classification/resolve/main/MCS-Classifyv3-Fast.pt").to(device),
"Model v3 (Accurate)": YOLO("https://huggingface.co/mbar0075/Maltese-Christian-Statue-Classification/resolve/main/MCS-Classifyv3-Accurate.pt").to(device)
}
parish_model_paths = {
"Model v1": "https://huggingface.co/mbar0075/Maltese-Christian-Statue-Classification/resolve/main/MCS-Classify-Parishv1.pt",
"Model v2": "https://huggingface.co/mbar0075/Maltese-Christian-Statue-Classification/resolve/main/MCS-Classify-Parishv2.pt"
}
# Loading the respective Parishes Model and Categories
parishes_model_path = "Model v2"
parishes_model = YOLO(parish_model_paths[parishes_model_path]).to(device)
parishes_categories = parishes[parishes_model_path]
def predict_image(image, model_name: str, size=(244, 244)) -> List[Tuple[str, str, float]]:
"""Predict the class of a given image and return sorted probabilities with categories."""
if model_name is None:
model_name = default_model
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
resized_img = cv2.resize(image, size)
resized_img = resized_img / 255.0 # Normalize
resized_img = resized_img.transpose(2, 0, 1) # Convert to (C, H, W)
resized_img = resized_img[None, ...] # Add batch dimension
# Run prediction
model = models.get(model_name)
if model is None:
raise ValueError(f"Model '{model_name}' not found.")
results = model.predict(image)
pred_probs = results[0].probs.data.cpu().numpy()
# Sort predictions by probability
sorted_indices = np.argsort(pred_probs)[::-1] # Descending order
english_categories = categories[model_name]["english"]
maltese_categories = categories[model_name]["maltese"]
sorted_predictions = [
(
english_categories[str(i)],
maltese_categories[str(i)],
round(pred_probs[i] * 100, 2) # Convert to percentage
)
for i in sorted_indices
]
return sorted_predictions
def predict_parish(image, size=(244, 244)) -> List[Tuple[str, float]]:
"""Predict the parish of a given image and return sorted probabilities with categories."""
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
resized_img = cv2.resize(image, size)
resized_img = resized_img / 255.0 # Normalize
resized_img = resized_img.transpose(2, 0, 1) # Convert to (C, H, W)
resized_img = resized_img[None, ...] # Add batch dimension
# Run prediction
results = parishes_model.predict(image)
pred_probs = results[0].probs.data.cpu().numpy()
# Sort predictions by probability
sorted_indices = np.argsort(pred_probs)[::-1] # Descending order
sorted_predictions = [
(
parishes_categories[str(i)],
round(pred_probs[i] * 100, 2) # Convert to percentage
)
for i in sorted_indices
]
return sorted_predictions
def classify_image(input_image, model_name):
# Check if model_name is None
if model_name is None:
model_name = default_model
start_time = time.time()
# Get predictions from the model
predictions = predict_image(input_image, model_name)
# Predict the parish
parish_predictions = predict_parish(input_image)
# Format predictions into a dictionary with confidence scores
formatted_predictions = {
f"{label} / {maltese_label}": confidence / 100
for label, maltese_label, confidence in predictions[:5]
}
# Format parish predictions into a dictionary with confidence scores
formatted_parish_predictions = {
f"{label}": confidence / 100
for label, confidence in parish_predictions[:5]
}
# Modify the first formatted prediction to include "From the Parish of ..."
first_label, first_confidence = parish_predictions[0]
formatted_parish_predictions[f"From the Parish of / Mill-Parroċċa ta' {first_label}"] = formatted_parish_predictions.pop(first_label)
# Get the label with the highest confidence
highest_confidence_label = predictions[0][0] # Assuming predictions are sorted by confidence
highest_confidence_synopsis = categories_synopsis.get(highest_confidence_label, "No synopsis available.")
# Calculate FPS
end_time = time.time()
elapsed_time = end_time - start_time
fps = 1.0 / elapsed_time
return (
formatted_predictions,
formatted_parish_predictions,
highest_confidence_synopsis,
round(fps, 2)
)
# Metadata
title = "Maltese Christian Statue Classifier ✝"
description_small = (
"Identify Maltese Christian Statues from Images using AI"
)
description = (
"Simply upload an image and let the model do the rest!"
)
article = (
# "The YOLO classification models are trained on datasets of Maltese Christian statues and religious figures. "
# "The MCS Dataset is open-source and available for access through https://github.com/mbar0075/Maltese-Christian-Statue-Classifier.\n"
"© Matthias Bartolo 2025. Licensed under the MIT License."
# "Descriptions by Miriam Bartolo Abela."
)
# Load examples
example_folder = "examples" # Single folder for all examples
examples = [[f"{example_folder}/{example}"] for example in os.listdir(example_folder) if example.endswith((".png", ".jpg", ".jpeg"))]
# For the list of examples, add the model name
for example in examples:
example.append(default_model)
css = """
<style>
body {
background-color: #2D1B5A !important;
color: white !important;
}
h1 {
text-align: center !important;
font-size: 3.5em !important;
color: #6A0DAD !important; /* Dark Purple */
}
h2 {
text-align: center !important;
font-size: 2.5em !important;
color: #B084E9 !important; /* Lighter Purple */
}
h3 {
text-align: center !important;
font-size: 2em !important;
color: white !important; /* White */
}
h4 {
text-align: center !important;
font-size: 1.5em !important;
color: white !important; /* White */
}
h5 {
text-align: left !important;
font-size: 1.5em !important;
color: white !important; /* White */
font-weight: bold !important;
margin-top: 50px !important;
}
.dataset-section {
text-align: center !important;
font-size: 2em !important;
margin-top: 20px !important;
}
.dataset-section a {
color: #4A90E2 !important;
text-decoration: none !important;
font-weight: bold !important;
}
.dataset-section a:hover {
text-decoration: underline !important;
}
#links {
text-align: center !important;
font-size: 2em !important;
}
#links a {
color: #93B7E9 !important;
text-decoration: none !important;
}
#links a:hover {
text-decoration: underline !important;
}
.example-section.show {
display: block !important;
}
.example-section.hide {
display: none !important;
}
.example-section {
text-align: center !important;
font-size: 1em !important;
margin-top: 20px !important;
margin-bottom: 20px !important;
}
.gr-accordion-header {
font-weight: bold !important;
}
</style>
"""
# Create the Gradio demo using Blocks
with gr.Blocks(theme=gr.themes.Soft()) as demo:
# Inject custom CSS into the interface using gr.HTML
gr.HTML(css)
with gr.Row():
gr.Markdown(f"# {title}")
with gr.Row():
gr.Markdown(f"## {description_small}")
with gr.Row():
gr.Markdown(f"### {description}")
with gr.Row():
gr.Markdown(
"### <a href='https://github.com/mbar0075/Maltese-Christian-Statue-Classifier/blob/main/Maltese%20Christian%20Statue%20Classification%20presentation.pdf'> Presentation</a> | <a href='https://github.com/mbar0075/Maltese-Christian-Statue-Classifier'> Code </a>"
)
# Path to your local image
header_path = os.path.join("header", "1.jpg")
# Print an image
with gr.Row():# For images needs to be HTML
gr.HTML("""
<div style="text-align: center;">
<h5 style="margin-bottom: 10px;">Explanation of the Process:</h5>
<img src="https://huggingface.co/spaces/mbar0075/Maltese-Christian-Statue-Classification/resolve/main/header_image.png" alt="Header Explanation" style="width: 100%; height: auto; margin-bottom: 20px;">
<h5 style="margin-top: 10px;">Try It Out Yourself:</h5>
</div>
""")
with gr.Row():
# Left Column (Image and Dropdown)
with gr.Column(scale=2):
input_image = gr.Image(type="pil", label="Upload an image", interactive=True)
model_dropdown = gr.Dropdown(
choices=list(models.keys()),
value=default_model,
label="Select Model",
interactive=True
)
# Right Column (Predictions)
with gr.Column(scale=2):
output_predictions = gr.Label(num_top_classes=5, label="Predictions (English / Maltese)")
output_parish_predictions = gr.Label(num_top_classes=5, label="Parish Predictions")
output_fps = gr.Number(label="Prediction speed (FPS)")
# Predictions in the same row
with gr.Row():
# Middle (Synopsis)
output_synopsis = gr.Textbox(label="Synopsis / Aktar Tagħrif")
with gr.Row():
# Clear button
clear_button = gr.ClearButton([input_image, model_dropdown, output_predictions, output_parish_predictions, output_synopsis, output_fps])
# Call the classify_image function
gr.Button("Classify").click(
classify_image,
inputs=[input_image, model_dropdown],
outputs=[output_predictions, output_parish_predictions, output_synopsis, output_fps]
)
# with gr.Row(elem_id="Examples"):
with gr.Accordion("Try Out Some Examples / Prova Xi Eżempji", open=False, elem_classes="example-section"): # open=False keeps it collapsed initially
gr.Examples(
examples=examples, # The list of examples
inputs=[input_image, model_dropdown] # Inputs to use the examples with
)
with gr.Row():
gr.Markdown(f"#### {article}")
# Launch the Gradio demo
demo.launch()
|