File size: 10,576 Bytes
c1c95fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b95a330
c1c95fc
3ca3114
c1c95fc
3ca3114
d2f1c62
 
 
3ca3114
 
 
 
 
 
 
2b0232f
c1c95fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b95a330
c1c95fc
3ca3114
c1c95fc
3ca3114
d2f1c62
 
 
3ca3114
b875465
3ca3114
 
 
 
 
2b0232f
c1c95fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2f1c62
c1c95fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2f1c62
c1c95fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea71b68
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
from typing import Tuple
import gradio as gr
import numpy as np
import supervision as sv
from ultralytics import YOLO
import os

MARKDOWN = """
<h1 style='text-align: left'>YOLO-Application Toolkit πŸš€</h1>
<p>Welcome to the YOLO-Application Toolkit! This demo highlights the powerful detection capabilities of various YOLO models pre-trained on different datasets. πŸŽ‰

Easily detect different objects for various contexts in images on the go. Perfect for quick experimentation and practical use. πŸŽ‰πŸ”</p>


**YOLO11**
<div style="display: flex; align-items: center;">
    <a href="https://docs.ultralytics.com/models/yolo11/" style="margin-right: 10px;">
      <img src="https://badges.aleen42.com/src/github.svg">
    </a>
    <a href="https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/train-yolo11-object-detection-on-custom-dataset.ipynb?ref=blog.roboflow.com" style="margin-right: 10px;">
      <img src="https://colab.research.google.com/assets/colab-badge.svg">
    </a>
  </div>

Powered by 
[Ultralytics](https://github.com/ultralytics/ultralytics).πŸ”₯

"""
# Roboflow [Inference](https://github.com/roboflow/inference), [Supervision](https://github.com/roboflow/supervision) and [Ultralytics](https://github.com/ultralytics/ultralytics).πŸ”₯

# Load models dynamically

MODELS = {
    "YOLO11m (COCO128)": YOLO("https://huggingface.co/mbar0075/YOLO-Application-Toolkit/resolve/main/yolo11m.pt"),
    "American Sign Language (ASL) (YOLO11m)": YOLO("https://huggingface.co/mbar0075/YOLO-Application-Toolkit/resolve/main/yolo11m_sign_language.pt"),
    # "Microscopic Cell Detection (YOLO11m)": YOLO("https://huggingface.co/mbar0075/YOLO-Application-Toolkit/resolve/main/yolo11m_microscope_cells.pt"),
    "Website Screenshots (YOLO11m)": YOLO("https://huggingface.co/mbar0075/YOLO-Application-Toolkit/resolve/main/yolo11m_website_screenshots.pt"),
    "Zoo Animals (YOLO11m)": YOLO("https://huggingface.co/mbar0075/YOLO-Application-Toolkit/resolve/main/yolo11m_zoo_animals.pt"),
    "Pinned Circuit Boards (YOLO11m)": YOLO("https://huggingface.co/mbar0075/YOLO-Application-Toolkit/resolve/main/yolo11m_circuit_boards.pt"),
    "Smoke Detection (YOLO11m)": YOLO("https://huggingface.co/mbar0075/YOLO-Application-Toolkit/resolve/main/yolo11m_smoke_detection.pt"),
    "Blood Cell Detection (YOLO11m)": YOLO("https://huggingface.co/mbar0075/YOLO-Application-Toolkit/resolve/main/yolo11m_blood_cells.pt"),
    "Coins Detection (YOLO11m)": YOLO("https://huggingface.co/mbar0075/YOLO-Application-Toolkit/resolve/main/yolo11m_coins.pt"),
    "Pizza Toppings Detection (YOLOv8s)": YOLO("https://huggingface.co/mbar0075/YOLO-Application-Toolkit/resolve/main/yolov8s_pizza.pt"),
    "Aquarium Fish Detection (YOLO11m)": YOLO("https://huggingface.co/mbar0075/YOLO-Application-Toolkit/resolve/main/yolo11m_aquarium_fish.pt"),
    # "Pelvis X-ray Detection (YOLO11m)": YOLO("https://huggingface.co/mbar0075/YOLO-Application-Toolkit/resolve/main/yolo11m_pelvis_xray.pt"),
    "Road Signs Detection (YOLO11m)": YOLO("https://huggingface.co/mbar0075/YOLO-Application-Toolkit/resolve/main/yolo11m_road_signs.pt"),
    # "Pizza Toppings Detection (YOLO11m)": YOLO("https://huggingface.co/mbar0075/YOLO-Application-Toolkit/resolve/main/yolo11s_pizza.pt"),
    "Pelvis X-ray Segmentation (YOLO11s)": YOLO("https://huggingface.co/mbar0075/YOLO-Application-Toolkit/resolve/main/yolo11s_seg_pelvis_xray.pt"),
    "Teeth X-ray Segmentation (YOLO11s)": YOLO("https://huggingface.co/mbar0075/YOLO-Application-Toolkit/resolve/main/yolo11s_seg_teeth_xray.pt"),
    "Football Players Detection (YOLO11s)": YOLO("https://huggingface.co/mbar0075/YOLO-Application-Toolkit/resolve/main/yolo11s_football_players.pt"),
    # "Litter Detection (YOLO11s)": YOLO("https://huggingface.co/mbar0075/YOLO-Application-Toolkit/resolve/main/yolo11s_litter_detection.pt"),
    "Wheat Detection (YOLO11s)": YOLO("https://huggingface.co/mbar0075/YOLO-Application-Toolkit/resolve/main/yolo11s_wheat_detection.pt"),
    "Signatures Detection (YOLO11s)": YOLO("https://huggingface.co/mbar0075/YOLO-Application-Toolkit/resolve/main/yolo11s_signatures_detection.pt"),
    "Billiards Detection (YOLO11s)": YOLO("https://huggingface.co/mbar0075/YOLO-Application-Toolkit/resolve/main/yolo11s_billiards_detection.pt"),
    "Car Parts Segmentation (YOLO11s)": YOLO("https://huggingface.co/mbar0075/YOLO-Application-Toolkit/resolve/main/yolo11s_seg_car_parts.pt"),
    "YOLO11s-Pose (COCO128)": YOLO("https://huggingface.co/mbar0075/YOLO-Application-Toolkit/resolve/main/yolo11s-pose.pt"),
    "Hand Keypoints Detection (YOLO11s)": YOLO("https://huggingface.co/mbar0075/YOLO-Application-Toolkit/resolve/main/yolo11s_hand_keypoints.pt"),
    "Garbage Detection (YOLO11m)": YOLO("https://huggingface.co/mbar0075/YOLO-Application-Toolkit/resolve/main/yolo11m_garbage_detection.pt"),
}


example_dir = "https://huggingface.co/spaces/mbar0075/YOLO-Application-Toolkit/resolve/main/examples/"
# Your existing example dictionary
EXAMPLE_DICT = {
    "YOLO11m (COCO128)": example_dir + "1.jpg",
    "American Sign Language (ASL) (YOLO11m)": example_dir + "2.jpg",
    # "Microscopic Cell Detection (YOLO11m)": example_dir + "3.jpg",
    "Website Screenshots (YOLO11m)": example_dir + "4.jpg",
    "Zoo Animals (YOLO11m)": example_dir + "5.jpg",
    "Pinned Circuit Boards (YOLO11m)": example_dir + "6.jpg",
    "Smoke Detection (YOLO11m)": example_dir + "7.jpg",
    "Blood Cell Detection (YOLO11m)": example_dir + "8.jpg",
    "Coins Detection (YOLO11m)": example_dir + "9.jpg",
    "Pizza Toppings Detection (YOLOv8s)": example_dir + "10.jpg",
    "Aquarium Fish Detection (YOLO11m)": example_dir + "11.jpg",
    # "Pelvis X-ray Detection (YOLO11m)": example_dir + "12.jpg",
    "Road Signs Detection (YOLO11m)": example_dir + "13.jpg",
    # "Pizza Toppings Detection (YOLO11m)": example_dir + "10.jpg",
    "Pelvis X-ray Segmentation (YOLO11s)": example_dir + "12.jpg",
    "Teeth X-ray Segmentation (YOLO11s)": example_dir + "14.jpg",
    "Football Players Detection (YOLO11s)": example_dir + "15.jpg",
    # "Litter Detection (YOLO11s)": example_dir + "16.jpg",
    "Wheat Detection (YOLO11s)": example_dir + "17.png",
    "Signatures Detection (YOLO11s)": example_dir + "18.jpg",
    "Billiards Detection (YOLO11s)": example_dir + "19.jpg",
    "Car Parts Segmentation (YOLO11s)": example_dir + "20.jpg",
    "YOLO11s-Pose (COCO128)": example_dir + "21.jpg",
    "Hand Keypoints Detection (YOLO11s)": example_dir + "22.jpg",
    "Garbage Detection (YOLO11m)": example_dir + "23.jpg",
}

LABEL_ANNOTATORS = sv.LabelAnnotator()
BOUNDING_BOX_ANNOTATORS = sv.BoxAnnotator()

def detect_and_annotate(
    model,
    input_image: np.ndarray,
    confidence_threshold: float,
    iou_threshold: float,
    class_id_mapping: dict = None
) -> np.ndarray:
    result = model(input_image, conf=confidence_threshold, iou=iou_threshold)[0]
    # Extracting Annotated Image
    return result.plot()

    # For supervision annotations:
    detections = sv.Detections.from_ultralytics(result)

    if class_id_mapping:
        detections.class_id = np.array([class_id_mapping[class_id] for class_id in detections.class_id])

    labels = [f"{class_name} ({confidence:.2f})" for class_name, confidence in zip(detections['class_name'], detections.confidence)]
    
    annotated_image = input_image.copy()
    annotated_image = BOUNDING_BOX_ANNOTATORS.annotate(scene=annotated_image, detections=detections)
    annotated_image = LABEL_ANNOTATORS.annotate(scene=annotated_image, detections=detections, labels=labels)
    return annotated_image

def process_image(
    input_image,
    yolov11_confidence_threshold: float,
    iou_threshold: float,
    model_name: str
) -> np.ndarray:
    # Load the selected model from the preloaded models
    model = MODELS[model_name]

    # Process the image
    return detect_and_annotate(model, np.array(input_image), yolov11_confidence_threshold, iou_threshold)

# Gradio UI components
yolo_11s_confidence_threshold_component = gr.Slider(
    minimum=0,
    maximum=1.0,
    value=0.3,
    step=0.01,
    label="YOLO Confidence Threshold",
    info=(
        "The confidence threshold for the YOLO model. Lower the threshold to "
        "reduce false negatives, enhancing the model's sensitivity to detect "
        "sought-after objects. Conversely, increase the threshold to minimize false "
        "positives, preventing the model from identifying objects it shouldn't."
    )
)

iou_threshold_component = gr.Slider(
    minimum=0,
    maximum=1.0,
    value=0.5,
    step=0.01,
    label="IoU Threshold",
    info=(
        "The Intersection over Union (IoU) threshold for non-maximum suppression. "
        "Decrease the value to lessen the occurrence of overlapping bounding boxes, "
        "making the detection process stricter. On the other hand, increase the value "
        "to allow more overlapping bounding boxes, accommodating a broader range of "
        "detections."
    )
)

model_dropdown = gr.Dropdown(
    choices=list(MODELS.keys()),
    label="Select Model",
    value="YOLO11m (COCO128)",
    info=(
        "Choose the YOLO model you want to use for object detection. Each model is "
        "trained on a specific dataset, making them suitable for various detection tasks."
    )
)

def update_example(model_name):
    return EXAMPLE_DICT[model_name]

with gr.Blocks() as demo:
    gr.Markdown(MARKDOWN)
    
    with gr.Accordion("Configuration", open=False):
        yolo_11s_confidence_threshold_component.render()
        iou_threshold_component.render()

    with gr.Row():
        model_dropdown.render()

    with gr.Row():
        image_input_component = gr.Image(type='pil', label='Input Image')
        yolo_11s_output_component = gr.Image(type='pil', label='YOLO Output')

    submit_button = gr.Button(value='Submit', scale=1, variant='primary')

    gr.Examples(
        fn=process_image,
        examples=[[EXAMPLE_DICT[i], 0.3, 0.5, i] for i in EXAMPLE_DICT.keys()],
        inputs=[image_input_component, yolo_11s_confidence_threshold_component, iou_threshold_component, model_dropdown],
        outputs=[yolo_11s_output_component]
    )

    model_dropdown.change(fn=update_example, inputs=model_dropdown, outputs=image_input_component)

    submit_button.click(
        fn=process_image,
        inputs=[image_input_component, yolo_11s_confidence_threshold_component, iou_threshold_component, model_dropdown],
        outputs=[yolo_11s_output_component]
    )

demo.launch(debug=False, show_error=True, max_threads=1)