mbarnig commited on
Commit
1dc903d
·
verified ·
1 Parent(s): 51d9b85

Upload 4 files

Browse files
Files changed (4) hide show
  1. 00001.wav +0 -0
  2. 00002.wav +0 -0
  3. app.py +20 -0
  4. model.py +168 -0
00001.wav ADDED
Binary file (268 kB). View file
 
00002.wav ADDED
Binary file (238 kB). View file
 
app.py ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ from model import ECAPA_gender
4
+
5
+ # Load the model
6
+ model = ECAPA_gender.from_pretrained('JaesungHuh/ecapa-gender')
7
+ model.eval()
8
+
9
+ def predict_gender(filepath):
10
+ audio = model.load_audio(filepath)
11
+ with torch.no_grad():
12
+ output = model.forward(audio)
13
+ probs = torch.softmax(output, dim=1)
14
+ prob_dict = {'Human ' + model.pred2gender[i]: float(prob) for i, prob in enumerate(probs[0])}
15
+ return prob_dict
16
+
17
+ audio_component = gr.Audio(type='filepath', label='Upload your audio file here')
18
+ label_component = gr.Label(label='Gender classification result')
19
+ demo = gr.Interface(fn=predict_gender, inputs=audio_component, outputs=label_component, examples=['00001.wav', '00002.wav'])
20
+ demo.launch()
model.py ADDED
@@ -0,0 +1,168 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ from typing import Optional
3
+
4
+ import torch
5
+ import torch.nn as nn
6
+ import torch.nn.functional as F
7
+
8
+ import torchaudio
9
+ from torchaudio.functional import resample
10
+
11
+ from huggingface_hub import PyTorchModelHubMixin
12
+
13
+
14
+ class SEModule(nn.Module):
15
+ def __init__(self, channels : int , bottleneck : int = 128) -> None:
16
+ super(SEModule, self).__init__()
17
+ self.se = nn.Sequential(
18
+ nn.AdaptiveAvgPool1d(1),
19
+ nn.Conv1d(channels, bottleneck, kernel_size=1, padding=0),
20
+ nn.ReLU(),
21
+ # nn.BatchNorm1d(bottleneck), # I remove this layer
22
+ nn.Conv1d(bottleneck, channels, kernel_size=1, padding=0),
23
+ nn.Sigmoid(),
24
+ )
25
+
26
+ def forward(self, input : torch.Tensor) -> torch.Tensor:
27
+ x = self.se(input)
28
+ return input * x
29
+
30
+
31
+ class Bottle2neck(nn.Module):
32
+ def __init__(self, inplanes : int, planes : int, kernel_size : Optional[int] = None, dilation : Optional[int] = None, scale : int = 8) -> None:
33
+ super(Bottle2neck, self).__init__()
34
+ width = int(math.floor(planes / scale))
35
+ self.conv1 = nn.Conv1d(inplanes, width*scale, kernel_size=1)
36
+ self.bn1 = nn.BatchNorm1d(width*scale)
37
+ self.nums = scale -1
38
+ convs = []
39
+ bns = []
40
+ num_pad = math.floor(kernel_size/2)*dilation
41
+ for i in range(self.nums):
42
+ convs.append(nn.Conv1d(width, width, kernel_size=kernel_size, dilation=dilation, padding=num_pad))
43
+ bns.append(nn.BatchNorm1d(width))
44
+ self.convs = nn.ModuleList(convs)
45
+ self.bns = nn.ModuleList(bns)
46
+ self.conv3 = nn.Conv1d(width*scale, planes, kernel_size=1)
47
+ self.bn3 = nn.BatchNorm1d(planes)
48
+ self.relu = nn.ReLU()
49
+ self.width = width
50
+ self.se = SEModule(planes)
51
+
52
+ def forward(self, x : torch.Tensor) -> torch.Tensor:
53
+ residual = x
54
+ out = self.conv1(x)
55
+ out = self.relu(out)
56
+ out = self.bn1(out)
57
+
58
+ spx = torch.split(out, self.width, 1)
59
+ for i in range(self.nums):
60
+ if i==0:
61
+ sp = spx[i]
62
+ else:
63
+ sp = sp + spx[i]
64
+ sp = self.convs[i](sp)
65
+ sp = self.relu(sp)
66
+ sp = self.bns[i](sp)
67
+ if i==0:
68
+ out = sp
69
+ else:
70
+ out = torch.cat((out, sp), 1)
71
+ out = torch.cat((out, spx[self.nums]),1)
72
+
73
+ out = self.conv3(out)
74
+ out = self.relu(out)
75
+ out = self.bn3(out)
76
+
77
+ out = self.se(out)
78
+ out += residual
79
+ return out
80
+
81
+
82
+ class ECAPA_gender(nn.Module, PyTorchModelHubMixin):
83
+ def __init__(self, C : int = 1024):
84
+ super(ECAPA_gender, self).__init__()
85
+ self.C = C
86
+ self.conv1 = nn.Conv1d(80, C, kernel_size=5, stride=1, padding=2)
87
+ self.relu = nn.ReLU()
88
+ self.bn1 = nn.BatchNorm1d(C)
89
+ self.layer1 = Bottle2neck(C, C, kernel_size=3, dilation=2, scale=8)
90
+ self.layer2 = Bottle2neck(C, C, kernel_size=3, dilation=3, scale=8)
91
+ self.layer3 = Bottle2neck(C, C, kernel_size=3, dilation=4, scale=8)
92
+ # I fixed the shape of the output from MFA layer, that is close to the setting from ECAPA paper.
93
+ self.layer4 = nn.Conv1d(3*C, 1536, kernel_size=1)
94
+ self.attention = nn.Sequential(
95
+ nn.Conv1d(4608, 256, kernel_size=1),
96
+ nn.ReLU(),
97
+ nn.BatchNorm1d(256),
98
+ nn.Tanh(), # I add this layer
99
+ nn.Conv1d(256, 1536, kernel_size=1),
100
+ nn.Softmax(dim=2),
101
+ )
102
+ self.bn5 = nn.BatchNorm1d(3072)
103
+ self.fc6 = nn.Linear(3072, 192)
104
+ self.bn6 = nn.BatchNorm1d(192)
105
+ self.fc7 = nn.Linear(192, 2)
106
+ self.pred2gender = {0 : 'male', 1 : 'female'}
107
+
108
+ def logtorchfbank(self, x : torch.Tensor) -> torch.Tensor:
109
+ # Preemphasis
110
+ flipped_filter = torch.FloatTensor([-0.97, 1.]).unsqueeze(0).unsqueeze(0)
111
+ x = x.unsqueeze(1)
112
+ x = F.pad(x, (1, 0), 'reflect')
113
+ x = F.conv1d(x, flipped_filter).squeeze(1)
114
+
115
+ # Melspectrogram
116
+ x = torchaudio.transforms.MelSpectrogram(sample_rate=16000, n_fft=512, win_length=400, hop_length=160, \
117
+ f_min = 20, f_max = 7600, window_fn=torch.hamming_window, n_mels=80)(x) + 1e-6
118
+
119
+ # Log and normalize
120
+ x = x.log()
121
+ x = x - torch.mean(x, dim=-1, keepdim=True)
122
+ return x
123
+
124
+ def forward(self, x : torch.Tensor) -> torch.Tensor:
125
+ x = self.logtorchfbank(x)
126
+
127
+ x = self.conv1(x)
128
+ x = self.relu(x)
129
+ x = self.bn1(x)
130
+
131
+ x1 = self.layer1(x)
132
+ x2 = self.layer2(x+x1)
133
+ x3 = self.layer3(x+x1+x2)
134
+
135
+ x = self.layer4(torch.cat((x1,x2,x3),dim=1))
136
+ x = self.relu(x)
137
+
138
+ t = x.size()[-1]
139
+
140
+ global_x = torch.cat((x,torch.mean(x,dim=2,keepdim=True).repeat(1,1,t), torch.sqrt(torch.var(x,dim=2,keepdim=True).clamp(min=1e-4)).repeat(1,1,t)), dim=1)
141
+
142
+ w = self.attention(global_x)
143
+
144
+ mu = torch.sum(x * w, dim=2)
145
+ sg = torch.sqrt( ( torch.sum((x**2) * w, dim=2) - mu**2 ).clamp(min=1e-4) )
146
+
147
+ x = torch.cat((mu,sg),1)
148
+ x = self.bn5(x)
149
+ x = self.fc6(x)
150
+ x = self.bn6(x)
151
+ x = self.relu(x)
152
+ x = self.fc7(x)
153
+
154
+ return x
155
+
156
+ def load_audio(self, path : str) -> torch.Tensor:
157
+ audio, sr = torchaudio.load(path)
158
+ if sr != 16000:
159
+ audio = resample(audio, sr, 16000)
160
+ return audio
161
+
162
+ def predict(self, audio : torch.Tensor) -> torch.Tensor:
163
+ audio = self.load_audio(audio)
164
+ self.eval()
165
+ with torch.no_grad():
166
+ output = self.forward(audio)
167
+ _, pred = output.max(1)
168
+ return self.pred2gender[pred.item()]