mc0c0z commited on
Commit
51eb02d
·
1 Parent(s): 15e775f

Update model path in app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -4
app.py CHANGED
@@ -3,7 +3,6 @@ import sys
3
 
4
  import gradio as gr
5
  import html
6
- from tqdm import tqdm
7
  import torch
8
 
9
  from transformers import MBartForConditionalGeneration, AutoTokenizer, AutoModel, AutoModelForQuestionAnswering, AutoModelForTokenClassification, pipeline
@@ -103,21 +102,21 @@ class CustomModel(nn.Module):
103
  phobert_sa = AutoModel.from_pretrained("vinai/phobert-base", output_hidden_states=True)
104
  phobert_sa_tokenizer = AutoTokenizer.from_pretrained("vinai/phobert-base")
105
  phobert_sa = CustomModel(phobert_sa)
106
- phobert_sa.load_state_dict(torch.load('sa_model\phobert_sentiment_analysis.pth', map_location=device))
107
  phobert_sa.to(device)
108
 
109
  ## PhoBERTv2
110
  phobertv2_sa = AutoModel.from_pretrained("vinai/phobert-base-v2", output_hidden_states=True)
111
  phobertv2_sa_tokenizer = AutoTokenizer.from_pretrained("vinai/phobert-base-v2")
112
  phobertv2_sa = CustomModel(phobertv2_sa)
113
- phobertv2_sa.load_state_dict(torch.load('sa_model\phobertv2_sentiment_analysis.pth', map_location=device))
114
  phobertv2_sa.to(device)
115
 
116
  ## Multilingual BERT
117
  m_bert_sa = AutoModel.from_pretrained("google-bert/bert-base-multilingual-cased", output_hidden_states=True)
118
  m_bert_sa_tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-multilingual-cased")
119
  m_bert_sa = CustomModel(m_bert_sa)
120
- m_bert_sa.load_state_dict(torch.load('sa_model\\bert_model_sentiment_analysis.pth', map_location=device))
121
  m_bert_sa.to(device)
122
 
123
  # Load Q&A model
 
3
 
4
  import gradio as gr
5
  import html
 
6
  import torch
7
 
8
  from transformers import MBartForConditionalGeneration, AutoTokenizer, AutoModel, AutoModelForQuestionAnswering, AutoModelForTokenClassification, pipeline
 
102
  phobert_sa = AutoModel.from_pretrained("vinai/phobert-base", output_hidden_states=True)
103
  phobert_sa_tokenizer = AutoTokenizer.from_pretrained("vinai/phobert-base")
104
  phobert_sa = CustomModel(phobert_sa)
105
+ phobert_sa.load_state_dict(torch.load('phobert_sentiment_analysis.pth', map_location=device))
106
  phobert_sa.to(device)
107
 
108
  ## PhoBERTv2
109
  phobertv2_sa = AutoModel.from_pretrained("vinai/phobert-base-v2", output_hidden_states=True)
110
  phobertv2_sa_tokenizer = AutoTokenizer.from_pretrained("vinai/phobert-base-v2")
111
  phobertv2_sa = CustomModel(phobertv2_sa)
112
+ phobertv2_sa.load_state_dict(torch.load('phobertv2_sentiment_analysis.pth', map_location=device))
113
  phobertv2_sa.to(device)
114
 
115
  ## Multilingual BERT
116
  m_bert_sa = AutoModel.from_pretrained("google-bert/bert-base-multilingual-cased", output_hidden_states=True)
117
  m_bert_sa_tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-multilingual-cased")
118
  m_bert_sa = CustomModel(m_bert_sa)
119
+ m_bert_sa.load_state_dict(torch.load('bert_model_sentiment_analysis.pth', map_location=device))
120
  m_bert_sa.to(device)
121
 
122
  # Load Q&A model