Spaces:
Runtime error
Runtime error
adding RAG feature
Browse files
app.py
CHANGED
@@ -2,6 +2,8 @@ from langchain.document_loaders import HuggingFaceDatasetLoader
|
|
2 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
3 |
from langchain.embeddings import HuggingFaceEmbeddings
|
4 |
from langchain.vectorstores import FAISS
|
|
|
|
|
5 |
import gradio as gr
|
6 |
|
7 |
|
@@ -24,12 +26,24 @@ embeddings = HuggingFaceEmbeddings(
|
|
24 |
db = FAISS.from_documents(docs, embeddings)
|
25 |
|
26 |
# Set up retrievers
|
27 |
-
retriever = db.as_retriever()
|
|
|
|
|
|
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
def generate(
|
31 |
-
docs = retriever.get_relevant_documents(
|
32 |
-
|
|
|
|
|
33 |
|
34 |
|
35 |
def respond(message, chat_history):
|
|
|
2 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
3 |
from langchain.embeddings import HuggingFaceEmbeddings
|
4 |
from langchain.vectorstores import FAISS
|
5 |
+
|
6 |
+
from transformers import AutoTokenizer, pipeline
|
7 |
import gradio as gr
|
8 |
|
9 |
|
|
|
26 |
db = FAISS.from_documents(docs, embeddings)
|
27 |
|
28 |
# Set up retrievers
|
29 |
+
retriever = db.as_retriever(search_kwargs={"k": 4})
|
30 |
+
|
31 |
+
# Load the tokenizer associated with the specified model
|
32 |
+
tokenizer = AutoTokenizer.from_pretrained("Intel/dynamic_tinybert", padding=True, truncation=True, max_length=512)
|
33 |
|
34 |
+
# Define a question-answering pipeline using the model and tokenizer
|
35 |
+
question_answerer = pipeline(
|
36 |
+
"question-answering",
|
37 |
+
model="Intel/dynamic_tinybert",
|
38 |
+
tokenizer=tokenizer,
|
39 |
+
return_tensors='pt'
|
40 |
+
)
|
41 |
|
42 |
+
def generate(question):
|
43 |
+
docs = retriever.get_relevant_documents(question)
|
44 |
+
context = docs[0].page_content
|
45 |
+
squad_ex = question_answerer(question=question, context=context)
|
46 |
+
return squad_ex['answer']
|
47 |
|
48 |
|
49 |
def respond(message, chat_history):
|