mccaly commited on
Commit
985cc7f
1 Parent(s): 2fa48ab

Upload 2805 files

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +9 -0
  2. FoodSeg103/.DS_Store +0 -0
  3. FoodSeg103/.dev/gather_models.py +197 -0
  4. FoodSeg103/.dev/upload_modelzoo.py +44 -0
  5. FoodSeg103/.gitignore +117 -0
  6. FoodSeg103/.pre-commit-config.yaml +40 -0
  7. FoodSeg103/.readthedocs.yml +7 -0
  8. FoodSeg103/.tags +0 -0
  9. FoodSeg103/.tags_sorted_by_file +0 -0
  10. FoodSeg103/LICENSE +203 -0
  11. FoodSeg103/README.md +119 -0
  12. FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/.DS_Store +0 -0
  13. FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/.dev/gather_models.py +197 -0
  14. FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/.dev/upload_modelzoo.py +44 -0
  15. FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/.github/CODE_OF_CONDUCT.md +76 -0
  16. FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/.github/CONTRIBUTING.md +57 -0
  17. FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/.github/ISSUE_TEMPLATE/config.yml +6 -0
  18. FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/.github/ISSUE_TEMPLATE/error-report.md +48 -0
  19. FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/.github/ISSUE_TEMPLATE/feature_request.md +22 -0
  20. FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/.github/ISSUE_TEMPLATE/general_questions.md +8 -0
  21. FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/.github/workflows/build.yml +98 -0
  22. FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/.github/workflows/deploy.yml +22 -0
  23. FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/.gitignore +117 -0
  24. FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/.pre-commit-config.yaml +40 -0
  25. FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/.readthedocs.yml +7 -0
  26. FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/LICENSE +220 -0
  27. FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/README.md +95 -0
  28. FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/configs/_base_/datasets/ade20k.py +54 -0
  29. FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/configs/_base_/datasets/chase_db1.py +59 -0
  30. FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/configs/_base_/datasets/cityscapes.py +54 -0
  31. FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/configs/_base_/datasets/cityscapes_769x769.py +35 -0
  32. FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/configs/_base_/datasets/drive.py +59 -0
  33. FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/configs/_base_/datasets/hrf.py +59 -0
  34. FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/configs/_base_/datasets/pascal_context.py +60 -0
  35. FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/configs/_base_/datasets/pascal_voc12.py +57 -0
  36. FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/configs/_base_/datasets/pascal_voc12_aug.py +9 -0
  37. FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/configs/_base_/datasets/stare.py +59 -0
  38. FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/configs/_base_/default_runtime.py +14 -0
  39. FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/configs/_base_/models/ann_r50-d8.py +46 -0
  40. FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/configs/_base_/models/apcnet_r50-d8.py +44 -0
  41. FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/configs/_base_/models/ccnet_r50-d8.py +44 -0
  42. FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/configs/_base_/models/cgnet.py +35 -0
  43. FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/configs/_base_/models/danet_r50-d8.py +44 -0
  44. FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/configs/_base_/models/deeplabv3_r50-d8.py +44 -0
  45. FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/configs/_base_/models/deeplabv3_unet_s5-d16.py +50 -0
  46. FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/configs/_base_/models/deeplabv3plus_r50-d8.py +46 -0
  47. FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/configs/_base_/models/dmnet_r50-d8.py +44 -0
  48. FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/configs/_base_/models/dnl_r50-d8.py +46 -0
  49. FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/configs/_base_/models/emanet_r50-d8.py +47 -0
  50. FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/configs/_base_/models/encnet_r50-d8.py +48 -0
.gitattributes CHANGED
@@ -33,3 +33,12 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ FoodSeg103/data/FoodSeg103/Images/img_dir/train/00000399.jpg filter=lfs diff=lfs merge=lfs -text
37
+ FoodSeg103/data/FoodSeg103/Images/img_dir/train/00001520.jpg filter=lfs diff=lfs merge=lfs -text
38
+ FoodSeg103/data/FoodSeg103/Images/img_dir/train/00001905.jpg filter=lfs diff=lfs merge=lfs -text
39
+ FoodSeg103/data/FoodSeg103/Images/img_dir/train/00002559.jpg filter=lfs diff=lfs merge=lfs -text
40
+ FoodSeg103/data/FoodSeg103/Images/img_dir/train/00003337.jpg filter=lfs diff=lfs merge=lfs -text
41
+ FoodSeg103/data/FoodSeg103/Images/img_dir/train/00004114.jpg filter=lfs diff=lfs merge=lfs -text
42
+ FoodSeg103/data/FoodSeg103/Images/img_dir/train/00006307.jpg filter=lfs diff=lfs merge=lfs -text
43
+ FoodSeg103/demo/mmcv/docs/en/_static/flow_raw_images.png filter=lfs diff=lfs merge=lfs -text
44
+ FoodSeg103/demo/mmcv/docs/en/_static/flow_warp_diff.png filter=lfs diff=lfs merge=lfs -text
FoodSeg103/.DS_Store ADDED
Binary file (10.2 kB). View file
 
FoodSeg103/.dev/gather_models.py ADDED
@@ -0,0 +1,197 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import glob
3
+ import json
4
+ import os
5
+ import os.path as osp
6
+ import shutil
7
+ import subprocess
8
+
9
+ import mmcv
10
+ import torch
11
+
12
+ # build schedule look-up table to automatically find the final model
13
+ RESULTS_LUT = ['mIoU', 'mAcc', 'aAcc']
14
+
15
+
16
+ def process_checkpoint(in_file, out_file):
17
+ checkpoint = torch.load(in_file, map_location='cpu')
18
+ # remove optimizer for smaller file size
19
+ if 'optimizer' in checkpoint:
20
+ del checkpoint['optimizer']
21
+ # if it is necessary to remove some sensitive data in checkpoint['meta'],
22
+ # add the code here.
23
+ torch.save(checkpoint, out_file)
24
+ sha = subprocess.check_output(['sha256sum', out_file]).decode()
25
+ final_file = out_file.rstrip('.pth') + '-{}.pth'.format(sha[:8])
26
+ subprocess.Popen(['mv', out_file, final_file])
27
+ return final_file
28
+
29
+
30
+ def get_final_iter(config):
31
+ iter_num = config.split('_')[-2]
32
+ assert iter_num.endswith('k')
33
+ return int(iter_num[:-1]) * 1000
34
+
35
+
36
+ def get_final_results(log_json_path, iter_num):
37
+ result_dict = dict()
38
+ with open(log_json_path, 'r') as f:
39
+ for line in f.readlines():
40
+ log_line = json.loads(line)
41
+ if 'mode' not in log_line.keys():
42
+ continue
43
+
44
+ if log_line['mode'] == 'train' and log_line['iter'] == iter_num:
45
+ result_dict['memory'] = log_line['memory']
46
+
47
+ if log_line['iter'] == iter_num:
48
+ result_dict.update({
49
+ key: log_line[key]
50
+ for key in RESULTS_LUT if key in log_line
51
+ })
52
+ return result_dict
53
+
54
+
55
+ def parse_args():
56
+ parser = argparse.ArgumentParser(description='Gather benchmarked models')
57
+ parser.add_argument(
58
+ 'root',
59
+ type=str,
60
+ help='root path of benchmarked models to be gathered')
61
+ parser.add_argument(
62
+ 'config',
63
+ type=str,
64
+ help='root path of benchmarked configs to be gathered')
65
+ parser.add_argument(
66
+ 'out_dir',
67
+ type=str,
68
+ help='output path of gathered models to be stored')
69
+ parser.add_argument('out_file', type=str, help='the output json file name')
70
+ parser.add_argument(
71
+ '--filter', type=str, nargs='+', default=[], help='config filter')
72
+ parser.add_argument(
73
+ '--all', action='store_true', help='whether include .py and .log')
74
+
75
+ args = parser.parse_args()
76
+ return args
77
+
78
+
79
+ def main():
80
+ args = parse_args()
81
+ models_root = args.root
82
+ models_out = args.out_dir
83
+ config_name = args.config
84
+ mmcv.mkdir_or_exist(models_out)
85
+
86
+ # find all models in the root directory to be gathered
87
+ raw_configs = list(mmcv.scandir(config_name, '.py', recursive=True))
88
+
89
+ # filter configs that is not trained in the experiments dir
90
+ used_configs = []
91
+ for raw_config in raw_configs:
92
+ work_dir = osp.splitext(osp.basename(raw_config))[0]
93
+ if osp.exists(osp.join(models_root, work_dir)):
94
+ used_configs.append((work_dir, raw_config))
95
+ print(f'Find {len(used_configs)} models to be gathered')
96
+
97
+ # find final_ckpt and log file for trained each config
98
+ # and parse the best performance
99
+ model_infos = []
100
+ for used_config, raw_config in used_configs:
101
+ bypass = True
102
+ for p in args.filter:
103
+ if p in used_config:
104
+ bypass = False
105
+ break
106
+ if bypass:
107
+ continue
108
+ exp_dir = osp.join(models_root, used_config)
109
+ # check whether the exps is finished
110
+ final_iter = get_final_iter(used_config)
111
+ final_model = 'iter_{}.pth'.format(final_iter)
112
+ model_path = osp.join(exp_dir, final_model)
113
+
114
+ # skip if the model is still training
115
+ if not osp.exists(model_path):
116
+ print(f'{used_config} train not finished yet')
117
+ continue
118
+
119
+ # get logs
120
+ log_json_paths = glob.glob(osp.join(exp_dir, '*.log.json'))
121
+ log_json_path = log_json_paths[0]
122
+ model_performance = None
123
+ for idx, _log_json_path in enumerate(log_json_paths):
124
+ model_performance = get_final_results(_log_json_path, final_iter)
125
+ if model_performance is not None:
126
+ log_json_path = _log_json_path
127
+ break
128
+
129
+ if model_performance is None:
130
+ print(f'{used_config} model_performance is None')
131
+ continue
132
+
133
+ model_time = osp.split(log_json_path)[-1].split('.')[0]
134
+ model_infos.append(
135
+ dict(
136
+ config=used_config,
137
+ raw_config=raw_config,
138
+ results=model_performance,
139
+ iters=final_iter,
140
+ model_time=model_time,
141
+ log_json_path=osp.split(log_json_path)[-1]))
142
+
143
+ # publish model for each checkpoint
144
+ publish_model_infos = []
145
+ for model in model_infos:
146
+ model_publish_dir = osp.join(models_out,
147
+ model['raw_config'].rstrip('.py'))
148
+ model_name = osp.split(model['config'])[-1].split('.')[0]
149
+
150
+ publish_model_path = osp.join(model_publish_dir,
151
+ model_name + '_' + model['model_time'])
152
+ trained_model_path = osp.join(models_root, model['config'],
153
+ 'iter_{}.pth'.format(model['iters']))
154
+ if osp.exists(model_publish_dir):
155
+ for file in os.listdir(model_publish_dir):
156
+ if file.endswith('.pth'):
157
+ print(f'model {file} found')
158
+ model['model_path'] = osp.abspath(
159
+ osp.join(model_publish_dir, file))
160
+ break
161
+ if 'model_path' not in model:
162
+ print(f'dir {model_publish_dir} exists, no model found')
163
+
164
+ else:
165
+ mmcv.mkdir_or_exist(model_publish_dir)
166
+
167
+ # convert model
168
+ final_model_path = process_checkpoint(trained_model_path,
169
+ publish_model_path)
170
+ model['model_path'] = final_model_path
171
+
172
+ new_json_path = f'{model_name}-{model["log_json_path"]}'
173
+ # copy log
174
+ shutil.copy(
175
+ osp.join(models_root, model['config'], model['log_json_path']),
176
+ osp.join(model_publish_dir, new_json_path))
177
+ if args.all:
178
+ new_txt_path = new_json_path.rstrip('.json')
179
+ shutil.copy(
180
+ osp.join(models_root, model['config'],
181
+ model['log_json_path'].rstrip('.json')),
182
+ osp.join(model_publish_dir, new_txt_path))
183
+
184
+ if args.all:
185
+ # copy config to guarantee reproducibility
186
+ raw_config = osp.join(config_name, model['raw_config'])
187
+ mmcv.Config.fromfile(raw_config).dump(
188
+ osp.join(model_publish_dir, osp.basename(raw_config)))
189
+
190
+ publish_model_infos.append(model)
191
+
192
+ models = dict(models=publish_model_infos)
193
+ mmcv.dump(models, osp.join(models_out, args.out_file))
194
+
195
+
196
+ if __name__ == '__main__':
197
+ main()
FoodSeg103/.dev/upload_modelzoo.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import os
3
+ import os.path as osp
4
+
5
+ import oss2
6
+
7
+ ACCESS_KEY_ID = os.getenv('OSS_ACCESS_KEY_ID', None)
8
+ ACCESS_KEY_SECRET = os.getenv('OSS_ACCESS_KEY_SECRET', None)
9
+ BUCKET_NAME = 'openmmlab'
10
+ ENDPOINT = 'https://oss-accelerate.aliyuncs.com'
11
+
12
+
13
+ def parse_args():
14
+ parser = argparse.ArgumentParser(description='Upload models to OSS')
15
+ parser.add_argument('model_zoo', type=str, help='model_zoo input')
16
+ parser.add_argument(
17
+ '--dst-folder',
18
+ type=str,
19
+ default='mmsegmentation/v0.5',
20
+ help='destination folder')
21
+ args = parser.parse_args()
22
+ return args
23
+
24
+
25
+ def main():
26
+ args = parse_args()
27
+ model_zoo = args.model_zoo
28
+ dst_folder = args.dst_folder
29
+ bucket = oss2.Bucket(
30
+ oss2.Auth(ACCESS_KEY_ID, ACCESS_KEY_SECRET), ENDPOINT, BUCKET_NAME)
31
+
32
+ for root, dirs, files in os.walk(model_zoo):
33
+ for file in files:
34
+ file_path = osp.relpath(osp.join(root, file), model_zoo)
35
+ print(f'Uploading {file_path}')
36
+
37
+ oss2.resumable_upload(bucket, osp.join(dst_folder, file_path),
38
+ osp.join(model_zoo, file_path))
39
+ bucket.put_object_acl(
40
+ osp.join(dst_folder, file_path), oss2.OBJECT_ACL_PUBLIC_READ)
41
+
42
+
43
+ if __name__ == '__main__':
44
+ main()
FoodSeg103/.gitignore ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Byte-compiled / optimized / DLL files
2
+ __pycache__/
3
+ *.py[cod]
4
+ *$py.class
5
+
6
+ # C extensions
7
+ *.so
8
+
9
+ # Distribution / packaging
10
+ .Python
11
+ build/
12
+ develop-eggs/
13
+ dist/
14
+ downloads/
15
+ eggs/
16
+ .eggs/
17
+ lib/
18
+ lib64/
19
+ parts/
20
+ sdist/
21
+ var/
22
+ wheels/
23
+ *.egg-info/
24
+ .installed.cfg
25
+ *.egg
26
+ MANIFEST
27
+
28
+ # PyInstaller
29
+ # Usually these files are written by a python script from a template
30
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
31
+ *.manifest
32
+ *.spec
33
+
34
+ # Installer logs
35
+ pip-log.txt
36
+ pip-delete-this-directory.txt
37
+
38
+ # Unit test / coverage reports
39
+ htmlcov/
40
+ .tox/
41
+ .coverage
42
+ .coverage.*
43
+ .cache
44
+ nosetests.xml
45
+ coverage.xml
46
+ *.cover
47
+ .hypothesis/
48
+ .pytest_cache/
49
+
50
+ # Translations
51
+ *.mo
52
+ *.pot
53
+
54
+ # Django stuff:
55
+ *.log
56
+ local_settings.py
57
+ db.sqlite3
58
+
59
+ # Flask stuff:
60
+ instance/
61
+ .webassets-cache
62
+
63
+ # Scrapy stuff:
64
+ .scrapy
65
+
66
+ # Sphinx documentation
67
+ docs/_build/
68
+
69
+ # PyBuilder
70
+ target/
71
+
72
+ # Jupyter Notebook
73
+ .ipynb_checkpoints
74
+
75
+ # pyenv
76
+ .python-version
77
+
78
+ # celery beat schedule file
79
+ celerybeat-schedule
80
+
81
+ # SageMath parsed files
82
+ *.sage.py
83
+
84
+ # Environments
85
+ .env
86
+ .venv
87
+ env/
88
+ venv/
89
+ ENV/
90
+ env.bak/
91
+ venv.bak/
92
+
93
+ # Spyder project settings
94
+ .spyderproject
95
+ .spyproject
96
+
97
+ # Rope project settings
98
+ .ropeproject
99
+
100
+ # mkdocs documentation
101
+ /site
102
+
103
+ # mypy
104
+ .mypy_cache/
105
+
106
+ data
107
+ .vscode
108
+ .idea
109
+
110
+ # custom
111
+ *.pkl
112
+ *.pkl.json
113
+ *.log.json
114
+ work_dirs/
115
+
116
+ # Pytorch
117
+ *.pth
FoodSeg103/.pre-commit-config.yaml ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ repos:
2
+ - repo: https://gitlab.com/pycqa/flake8.git
3
+ rev: 3.8.3
4
+ hooks:
5
+ - id: flake8
6
+ - repo: https://github.com/asottile/seed-isort-config
7
+ rev: v2.2.0
8
+ hooks:
9
+ - id: seed-isort-config
10
+ - repo: https://github.com/timothycrosley/isort
11
+ rev: 4.3.21
12
+ hooks:
13
+ - id: isort
14
+ - repo: https://github.com/pre-commit/mirrors-yapf
15
+ rev: v0.30.0
16
+ hooks:
17
+ - id: yapf
18
+ - repo: https://github.com/pre-commit/pre-commit-hooks
19
+ rev: v3.1.0
20
+ hooks:
21
+ - id: trailing-whitespace
22
+ - id: check-yaml
23
+ - id: end-of-file-fixer
24
+ - id: requirements-txt-fixer
25
+ - id: double-quote-string-fixer
26
+ - id: check-merge-conflict
27
+ - id: fix-encoding-pragma
28
+ args: ["--remove"]
29
+ - id: mixed-line-ending
30
+ args: ["--fix=lf"]
31
+ - repo: https://github.com/jumanjihouse/pre-commit-hooks
32
+ rev: 2.1.4
33
+ hooks:
34
+ - id: markdownlint
35
+ args: ["-r", "~MD002,~MD013,~MD029,~MD033,~MD034,~MD036"]
36
+ - repo: https://github.com/myint/docformatter
37
+ rev: v1.3.1
38
+ hooks:
39
+ - id: docformatter
40
+ args: ["--in-place", "--wrap-descriptions", "79"]
FoodSeg103/.readthedocs.yml ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ version: 2
2
+
3
+ python:
4
+ version: 3.7
5
+ install:
6
+ - requirements: requirements/docs.txt
7
+ - requirements: requirements/readthedocs.txt
FoodSeg103/.tags ADDED
The diff for this file is too large to render. See raw diff
 
FoodSeg103/.tags_sorted_by_file ADDED
The diff for this file is too large to render. See raw diff
 
FoodSeg103/LICENSE ADDED
@@ -0,0 +1,203 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Copyright 2020 The MMSegmentation Authors. All rights reserved.
2
+
3
+ Apache License
4
+ Version 2.0, January 2004
5
+ http://www.apache.org/licenses/
6
+
7
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
8
+
9
+ 1. Definitions.
10
+
11
+ "License" shall mean the terms and conditions for use, reproduction,
12
+ and distribution as defined by Sections 1 through 9 of this document.
13
+
14
+ "Licensor" shall mean the copyright owner or entity authorized by
15
+ the copyright owner that is granting the License.
16
+
17
+ "Legal Entity" shall mean the union of the acting entity and all
18
+ other entities that control, are controlled by, or are under common
19
+ control with that entity. For the purposes of this definition,
20
+ "control" means (i) the power, direct or indirect, to cause the
21
+ direction or management of such entity, whether by contract or
22
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
23
+ outstanding shares, or (iii) beneficial ownership of such entity.
24
+
25
+ "You" (or "Your") shall mean an individual or Legal Entity
26
+ exercising permissions granted by this License.
27
+
28
+ "Source" form shall mean the preferred form for making modifications,
29
+ including but not limited to software source code, documentation
30
+ source, and configuration files.
31
+
32
+ "Object" form shall mean any form resulting from mechanical
33
+ transformation or translation of a Source form, including but
34
+ not limited to compiled object code, generated documentation,
35
+ and conversions to other media types.
36
+
37
+ "Work" shall mean the work of authorship, whether in Source or
38
+ Object form, made available under the License, as indicated by a
39
+ copyright notice that is included in or attached to the work
40
+ (an example is provided in the Appendix below).
41
+
42
+ "Derivative Works" shall mean any work, whether in Source or Object
43
+ form, that is based on (or derived from) the Work and for which the
44
+ editorial revisions, annotations, elaborations, or other modifications
45
+ represent, as a whole, an original work of authorship. For the purposes
46
+ of this License, Derivative Works shall not include works that remain
47
+ separable from, or merely link (or bind by name) to the interfaces of,
48
+ the Work and Derivative Works thereof.
49
+
50
+ "Contribution" shall mean any work of authorship, including
51
+ the original version of the Work and any modifications or additions
52
+ to that Work or Derivative Works thereof, that is intentionally
53
+ submitted to Licensor for inclusion in the Work by the copyright owner
54
+ or by an individual or Legal Entity authorized to submit on behalf of
55
+ the copyright owner. For the purposes of this definition, "submitted"
56
+ means any form of electronic, verbal, or written communication sent
57
+ to the Licensor or its representatives, including but not limited to
58
+ communication on electronic mailing lists, source code control systems,
59
+ and issue tracking systems that are managed by, or on behalf of, the
60
+ Licensor for the purpose of discussing and improving the Work, but
61
+ excluding communication that is conspicuously marked or otherwise
62
+ designated in writing by the copyright owner as "Not a Contribution."
63
+
64
+ "Contributor" shall mean Licensor and any individual or Legal Entity
65
+ on behalf of whom a Contribution has been received by Licensor and
66
+ subsequently incorporated within the Work.
67
+
68
+ 2. Grant of Copyright License. Subject to the terms and conditions of
69
+ this License, each Contributor hereby grants to You a perpetual,
70
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
71
+ copyright license to reproduce, prepare Derivative Works of,
72
+ publicly display, publicly perform, sublicense, and distribute the
73
+ Work and such Derivative Works in Source or Object form.
74
+
75
+ 3. Grant of Patent License. Subject to the terms and conditions of
76
+ this License, each Contributor hereby grants to You a perpetual,
77
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
78
+ (except as stated in this section) patent license to make, have made,
79
+ use, offer to sell, sell, import, and otherwise transfer the Work,
80
+ where such license applies only to those patent claims licensable
81
+ by such Contributor that are necessarily infringed by their
82
+ Contribution(s) alone or by combination of their Contribution(s)
83
+ with the Work to which such Contribution(s) was submitted. If You
84
+ institute patent litigation against any entity (including a
85
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
86
+ or a Contribution incorporated within the Work constitutes direct
87
+ or contributory patent infringement, then any patent licenses
88
+ granted to You under this License for that Work shall terminate
89
+ as of the date such litigation is filed.
90
+
91
+ 4. Redistribution. You may reproduce and distribute copies of the
92
+ Work or Derivative Works thereof in any medium, with or without
93
+ modifications, and in Source or Object form, provided that You
94
+ meet the following conditions:
95
+
96
+ (a) You must give any other recipients of the Work or
97
+ Derivative Works a copy of this License; and
98
+
99
+ (b) You must cause any modified files to carry prominent notices
100
+ stating that You changed the files; and
101
+
102
+ (c) You must retain, in the Source form of any Derivative Works
103
+ that You distribute, all copyright, patent, trademark, and
104
+ attribution notices from the Source form of the Work,
105
+ excluding those notices that do not pertain to any part of
106
+ the Derivative Works; and
107
+
108
+ (d) If the Work includes a "NOTICE" text file as part of its
109
+ distribution, then any Derivative Works that You distribute must
110
+ include a readable copy of the attribution notices contained
111
+ within such NOTICE file, excluding those notices that do not
112
+ pertain to any part of the Derivative Works, in at least one
113
+ of the following places: within a NOTICE text file distributed
114
+ as part of the Derivative Works; within the Source form or
115
+ documentation, if provided along with the Derivative Works; or,
116
+ within a display generated by the Derivative Works, if and
117
+ wherever such third-party notices normally appear. The contents
118
+ of the NOTICE file are for informational purposes only and
119
+ do not modify the License. You may add Your own attribution
120
+ notices within Derivative Works that You distribute, alongside
121
+ or as an addendum to the NOTICE text from the Work, provided
122
+ that such additional attribution notices cannot be construed
123
+ as modifying the License.
124
+
125
+ You may add Your own copyright statement to Your modifications and
126
+ may provide additional or different license terms and conditions
127
+ for use, reproduction, or distribution of Your modifications, or
128
+ for any such Derivative Works as a whole, provided Your use,
129
+ reproduction, and distribution of the Work otherwise complies with
130
+ the conditions stated in this License.
131
+
132
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
133
+ any Contribution intentionally submitted for inclusion in the Work
134
+ by You to the Licensor shall be under the terms and conditions of
135
+ this License, without any additional terms or conditions.
136
+ Notwithstanding the above, nothing herein shall supersede or modify
137
+ the terms of any separate license agreement you may have executed
138
+ with Licensor regarding such Contributions.
139
+
140
+ 6. Trademarks. This License does not grant permission to use the trade
141
+ names, trademarks, service marks, or product names of the Licensor,
142
+ except as required for reasonable and customary use in describing the
143
+ origin of the Work and reproducing the content of the NOTICE file.
144
+
145
+ 7. Disclaimer of Warranty. Unless required by applicable law or
146
+ agreed to in writing, Licensor provides the Work (and each
147
+ Contributor provides its Contributions) on an "AS IS" BASIS,
148
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
149
+ implied, including, without limitation, any warranties or conditions
150
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
151
+ PARTICULAR PURPOSE. You are solely responsible for determining the
152
+ appropriateness of using or redistributing the Work and assume any
153
+ risks associated with Your exercise of permissions under this License.
154
+
155
+ 8. Limitation of Liability. In no event and under no legal theory,
156
+ whether in tort (including negligence), contract, or otherwise,
157
+ unless required by applicable law (such as deliberate and grossly
158
+ negligent acts) or agreed to in writing, shall any Contributor be
159
+ liable to You for damages, including any direct, indirect, special,
160
+ incidental, or consequential damages of any character arising as a
161
+ result of this License or out of the use or inability to use the
162
+ Work (including but not limited to damages for loss of goodwill,
163
+ work stoppage, computer failure or malfunction, or any and all
164
+ other commercial damages or losses), even if such Contributor
165
+ has been advised of the possibility of such damages.
166
+
167
+ 9. Accepting Warranty or Additional Liability. While redistributing
168
+ the Work or Derivative Works thereof, You may choose to offer,
169
+ and charge a fee for, acceptance of support, warranty, indemnity,
170
+ or other liability obligations and/or rights consistent with this
171
+ License. However, in accepting such obligations, You may act only
172
+ on Your own behalf and on Your sole responsibility, not on behalf
173
+ of any other Contributor, and only if You agree to indemnify,
174
+ defend, and hold each Contributor harmless for any liability
175
+ incurred by, or claims asserted against, such Contributor by reason
176
+ of your accepting any such warranty or additional liability.
177
+
178
+ END OF TERMS AND CONDITIONS
179
+
180
+ APPENDIX: How to apply the Apache License to your work.
181
+
182
+ To apply the Apache License to your work, attach the following
183
+ boilerplate notice, with the fields enclosed by brackets "[]"
184
+ replaced with your own identifying information. (Don't include
185
+ the brackets!) The text should be enclosed in the appropriate
186
+ comment syntax for the file format. We also recommend that a
187
+ file or class name and description of purpose be included on the
188
+ same "printed page" as the copyright notice for easier
189
+ identification within third-party archives.
190
+
191
+ Copyright 2020 The MMSegmentation Authors.
192
+
193
+ Licensed under the Apache License, Version 2.0 (the "License");
194
+ you may not use this file except in compliance with the License.
195
+ You may obtain a copy of the License at
196
+
197
+ http://www.apache.org/licenses/LICENSE-2.0
198
+
199
+ Unless required by applicable law or agreed to in writing, software
200
+ distributed under the License is distributed on an "AS IS" BASIS,
201
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
202
+ See the License for the specific language governing permissions and
203
+ limitations under the License.
FoodSeg103/README.md ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # A Large-Scale Benchmark for Food Image Segmentation
2
+
3
+ By [Xiongwei Wu](http://xiongweiwu.github.io/), [Xin Fu](https://xinfu607.github.io/), Ying Liu, [Ee-Peng Lim](http://www.mysmu.edu/faculty/eplim/), [Steven C.H. Hoi](https://sites.google.com/view/stevenhoi/home/), [Qianru Sun](https://qianrusun.com/).
4
+
5
+
6
+ <div align="center">
7
+ <img src="resources/foodseg103.png" width="800"/>
8
+ </div>
9
+ <br />
10
+
11
+ ## Introduction
12
+
13
+ We build a new food image dataset FoodSeg103 containing 7,118 images. We annotate these images with 104 ingredient classes and each image has an average of 6 ingredient labels and pixel-wise masks.
14
+ In addition, we propose a multi-modality pre-training approach called ReLeM that explicitly equips a segmentation model with rich and semantic food knowledge.
15
+
16
+ In this software, we use three popular semantic segmentation methods (i.e., Dilated Convolution based, Feature Pyramid based, and Vision Transformer based) as baselines, and evaluate them as well as ReLeM on our new datasets. We believe that the FoodSeg103 and the pre-trained models using ReLeM can serve as a benchmark to facilitate future works on fine-grained food image understanding.
17
+
18
+ Please refer our [paper](https://arxiv.org/abs/2105.05409) and our [homepage](https://xiongweiwu.github.io/foodseg103.html) for more details.
19
+
20
+ ## License
21
+
22
+ This project is released under the [Apache 2.0 license](LICENSE).
23
+
24
+
25
+ ## Installation
26
+
27
+ Please refer to [get_started.md](docs/get_started.md#installation) for installation.
28
+
29
+ ## Dataset
30
+
31
+ Please download the file from [url](https://research.larc.smu.edu.sg/downloads/datarepo/FoodSeg103.zip) and unzip the data in ./data folder (./data/FoodSeg103/), with passwd: LARCdataset9947
32
+
33
+ ## Leaderboard
34
+
35
+ Please refer to [leaderboard](https://paperswithcode.com/dataset/foodseg103) in paperwithcode website.
36
+
37
+ ## Benchmark and model zoo
38
+
39
+ :exclamation::exclamation::exclamation: **We have finished the course so the models are available again. Please download the trained models from THIS [link](https://smu-my.sharepoint.com/:u:/g/personal/xwwu_smu_edu_sg/EWBcCC3QrO9LthKX66QCzyoBhFU7PHXKcHhh1lgIC98uKw?e=bHT7vM):eyes: .**
40
+
41
+ Encoder | Decoder | Crop Size | Batch Size |mIoU | mAcc | Link
42
+ --- |:---:|:---:|:---:|:---:|:---:|:---:
43
+ R-50 | [FPN](https://arxiv.org/abs/1901.02446) | 512x1024 | 8 | 27.8 | 38.2 | [Model+Config](https://drive.google.com/drive/folders/1CQ5CXxASAoobj7bKqyuvazkeusqMAM4F?usp=sharing)
44
+ ReLeM-R-50 | FPN | 512x1024 | 8 | 29.1 | 39.8 | [Model+Config](https://drive.google.com/drive/folders/1m7N2EE8jkX67a0lD6GZ4NQgr4gEcWpDU?usp=sharing)
45
+ R-50 | [CCNet](https://arxiv.org/abs/1811.11721) | 512x1024 | 8 | 35.5 | 45.3 | [Model+Config](https://drive.google.com/drive/folders/1pNPbtrGqCq_Zlina2PCs6X8bIvY9ZZxG?usp=sharing)
46
+ ReLeM-R-50 | CCNet | 512x1024 | 8 | 36.8 | 47.4 | [Model+Config](https://drive.google.com/drive/folders/1FWwxAsZzDnBbDBEbohqOA8htyWgMLM4U?usp=sharing)
47
+ [PVT-S](https://arxiv.org/abs/2102.12122) | FPN | 512x1024 | 8 | 31.3 | 43.0 | Model+Config
48
+ ReLeM-PVT-S | FPN | 512x1024 | 8 | 32.0 | 44.1 | Model+Config
49
+ [ViT-16/B](https://openreview.net/forum?id=YicbFdNTTy) | [Naive](https://arxiv.org/abs/2012.15840) | 768x768 | 4 | 41.3 | 52.7 | [Model+Config](https://drive.google.com/drive/folders/19b3VG906CA-5kQFaJVk5U6kDxnw9HcWL?usp=sharing)
50
+ ReLeM-ViT-16/B | Naive | 768x768 | 4 | 43.9 | 57.0 | [Model+Config](https://drive.google.com/drive/folders/10yKiu8aMeTGphU2CKT2ybeAC3ezgDnXP?usp=sharing)
51
+ ViT-16/B | PUP | 768x768 | 4 | 38.5 | 49.1 | Model+Config
52
+ ReLeM-ViT-16/B | PUP | 768x768 | 4 | 42.5 | 53.9 | Model+Config
53
+ ViT-16/B | [MLA](https://arxiv.org/abs/2012.15840) | 768x768 | 4 | 45.1 | 57.4 | [Model+Config](https://drive.google.com/drive/folders/17Ht1HQDaBJmS0FXaXGjHk0VQNhAJxrlF?usp=sharing)
54
+ ReLeM-ViT-16/B | MLA | 768x768 | 4 | 43.3 | 55.9 | [Model+Config](https://drive.google.com/drive/folders/12OlkStefNmELNLo-xJqc-lE-kPZ7DvPV?usp=sharing)
55
+ [ViT-16/L](https://openreview.net/forum?id=YicbFdNTTy) | MLA | 768x768 | 4 | 44.5 | 56.6 | [Model+Config](https://drive.google.com/drive/folders/1PS4uh2zktNc0hh-mSLZkRTqgNnkfh7xu?usp=sharing)
56
+ [Swin-S](https://arxiv.org/abs/2103.14030) | [UperNet](https://arxiv.org/abs/1807.10221) | 512x1024 | 8 | 41.6 | 53.6 | [Model+Config](https://drive.google.com/drive/folders/1E5fZga8h65dNZCX1m8zywvB8MwrleFNg?usp=sharing)
57
+ [Swin-B](https://arxiv.org/abs/2103.14030) | UperNet | 512x1024 | 8 | 41.2 | 53.9 | [Model+Config](https://drive.google.com/drive/folders/1kqOsH51h1pa-88tbFVUV3mmzTNCGzqd0?usp=sharing)
58
+
59
+
60
+ [1] *We do not include the implementation of [swin](https://arxiv.org/abs/2103.14030) in this software. You can use the official [implementation](https://github.com/SwinTransformer/Swin-Transformer-Semantic-Segmentation) based on our provided models.* \
61
+ [2] *We use Step-wise learning policy to train PVT model since we found this policy can yield higher performance, and for other baselines we adopt the default settings.* \
62
+ [3] *We use Recipe1M to train ReLeM-PVT-S while other ReLeM models are trained with Recipe1M+ due to time limitation.*
63
+
64
+
65
+
66
+ ## Train & Test
67
+
68
+ Train script:
69
+
70
+ ```
71
+ CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 --master_port=${PORT:-300} tools/train.py --config [config] --work-dir [work-dir] --launcher pytorch
72
+ ```
73
+
74
+ Exmaple:
75
+
76
+ ```
77
+ CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 --master_port=${PORT:-300} tools/train.py --config configs/foodnet/SETR_Naive_768x768_80k_base_RM.py --work-dir checkpoints/SETR_Naive_ReLeM --launcher pytorch
78
+ ```
79
+
80
+ Test script:
81
+
82
+ ```
83
+ CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 --master_port=${PORT:-999} tools/test.py [config] [weights] --launcher pytorch --eval mIoU
84
+ ```
85
+
86
+ Example:
87
+
88
+ ```
89
+ CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 --master_port=${PORT:-999} tools/test.py checkpoints/SETR_Naive_ReLeM/SETR_Naive_768x768_80k_base_RM.py checkpoints/SETR_Naive_ReLeM/iter_80000.pth --launcher pytorch --eval mIoU
90
+ ```
91
+
92
+ ## ReLeM
93
+ We train recipe information based on the implementation of [im2recipe](https://github.com/torralba-lab/im2recipe-Pytorch) with small modifications, which is trained on [Recipe1M+](http://pic2recipe.csail.mit.edu/) dataset (test images of FoodSeg103 are removed). I may upload the lmdb file later due to the huge datasize (>35G).
94
+
95
+ It takes about 2~3 weeks to train a ReLeM ViT-Base model with 8 Tesla-V100 cards, so I strongly recommend you use my pre-trained models([link](https://drive.google.com/drive/folders/1LRCHxeMuCXMb68I1XFI8q-aQ2cCyUx_r?usp=sharing)).
96
+
97
+
98
+ ## Citation
99
+
100
+ If you find this project useful in your research, please consider cite:
101
+
102
+ ```latex
103
+ @inproceedings{wu2021foodseg,
104
+ title={A Large-Scale Benchmark for Food Image Segmentation},
105
+ author={Wu, Xiongwei and Fu, Xin and Liu, Ying and Lim, Ee-Peng and Hoi, Steven CH and Sun, Qianru},
106
+ booktitle={Proceedings of ACM international conference on Multimedia},
107
+ year={2021}
108
+ }
109
+ ```
110
+
111
+ ## Other Issues
112
+
113
+ If you meet other issues in using the software, you can check the original mmsegmentation (see [doc](https://mmsegmentation.readthedocs.io/) for more details).
114
+
115
+
116
+ ## Acknowledgement
117
+
118
+ The segmentation software in this project was developed mainly by extending the [segmentation](https://github.com/open-mmlab/mmsegmentation/).
119
+
FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/.DS_Store ADDED
Binary file (8.2 kB). View file
 
FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/.dev/gather_models.py ADDED
@@ -0,0 +1,197 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import glob
3
+ import json
4
+ import os
5
+ import os.path as osp
6
+ import shutil
7
+ import subprocess
8
+
9
+ import mmcv
10
+ import torch
11
+
12
+ # build schedule look-up table to automatically find the final model
13
+ RESULTS_LUT = ['mIoU', 'mAcc', 'aAcc']
14
+
15
+
16
+ def process_checkpoint(in_file, out_file):
17
+ checkpoint = torch.load(in_file, map_location='cpu')
18
+ # remove optimizer for smaller file size
19
+ if 'optimizer' in checkpoint:
20
+ del checkpoint['optimizer']
21
+ # if it is necessary to remove some sensitive data in checkpoint['meta'],
22
+ # add the code here.
23
+ torch.save(checkpoint, out_file)
24
+ sha = subprocess.check_output(['sha256sum', out_file]).decode()
25
+ final_file = out_file.rstrip('.pth') + '-{}.pth'.format(sha[:8])
26
+ subprocess.Popen(['mv', out_file, final_file])
27
+ return final_file
28
+
29
+
30
+ def get_final_iter(config):
31
+ iter_num = config.split('_')[-2]
32
+ assert iter_num.endswith('k')
33
+ return int(iter_num[:-1]) * 1000
34
+
35
+
36
+ def get_final_results(log_json_path, iter_num):
37
+ result_dict = dict()
38
+ with open(log_json_path, 'r') as f:
39
+ for line in f.readlines():
40
+ log_line = json.loads(line)
41
+ if 'mode' not in log_line.keys():
42
+ continue
43
+
44
+ if log_line['mode'] == 'train' and log_line['iter'] == iter_num:
45
+ result_dict['memory'] = log_line['memory']
46
+
47
+ if log_line['iter'] == iter_num:
48
+ result_dict.update({
49
+ key: log_line[key]
50
+ for key in RESULTS_LUT if key in log_line
51
+ })
52
+ return result_dict
53
+
54
+
55
+ def parse_args():
56
+ parser = argparse.ArgumentParser(description='Gather benchmarked models')
57
+ parser.add_argument(
58
+ 'root',
59
+ type=str,
60
+ help='root path of benchmarked models to be gathered')
61
+ parser.add_argument(
62
+ 'config',
63
+ type=str,
64
+ help='root path of benchmarked configs to be gathered')
65
+ parser.add_argument(
66
+ 'out_dir',
67
+ type=str,
68
+ help='output path of gathered models to be stored')
69
+ parser.add_argument('out_file', type=str, help='the output json file name')
70
+ parser.add_argument(
71
+ '--filter', type=str, nargs='+', default=[], help='config filter')
72
+ parser.add_argument(
73
+ '--all', action='store_true', help='whether include .py and .log')
74
+
75
+ args = parser.parse_args()
76
+ return args
77
+
78
+
79
+ def main():
80
+ args = parse_args()
81
+ models_root = args.root
82
+ models_out = args.out_dir
83
+ config_name = args.config
84
+ mmcv.mkdir_or_exist(models_out)
85
+
86
+ # find all models in the root directory to be gathered
87
+ raw_configs = list(mmcv.scandir(config_name, '.py', recursive=True))
88
+
89
+ # filter configs that is not trained in the experiments dir
90
+ used_configs = []
91
+ for raw_config in raw_configs:
92
+ work_dir = osp.splitext(osp.basename(raw_config))[0]
93
+ if osp.exists(osp.join(models_root, work_dir)):
94
+ used_configs.append((work_dir, raw_config))
95
+ print(f'Find {len(used_configs)} models to be gathered')
96
+
97
+ # find final_ckpt and log file for trained each config
98
+ # and parse the best performance
99
+ model_infos = []
100
+ for used_config, raw_config in used_configs:
101
+ bypass = True
102
+ for p in args.filter:
103
+ if p in used_config:
104
+ bypass = False
105
+ break
106
+ if bypass:
107
+ continue
108
+ exp_dir = osp.join(models_root, used_config)
109
+ # check whether the exps is finished
110
+ final_iter = get_final_iter(used_config)
111
+ final_model = 'iter_{}.pth'.format(final_iter)
112
+ model_path = osp.join(exp_dir, final_model)
113
+
114
+ # skip if the model is still training
115
+ if not osp.exists(model_path):
116
+ print(f'{used_config} train not finished yet')
117
+ continue
118
+
119
+ # get logs
120
+ log_json_paths = glob.glob(osp.join(exp_dir, '*.log.json'))
121
+ log_json_path = log_json_paths[0]
122
+ model_performance = None
123
+ for idx, _log_json_path in enumerate(log_json_paths):
124
+ model_performance = get_final_results(_log_json_path, final_iter)
125
+ if model_performance is not None:
126
+ log_json_path = _log_json_path
127
+ break
128
+
129
+ if model_performance is None:
130
+ print(f'{used_config} model_performance is None')
131
+ continue
132
+
133
+ model_time = osp.split(log_json_path)[-1].split('.')[0]
134
+ model_infos.append(
135
+ dict(
136
+ config=used_config,
137
+ raw_config=raw_config,
138
+ results=model_performance,
139
+ iters=final_iter,
140
+ model_time=model_time,
141
+ log_json_path=osp.split(log_json_path)[-1]))
142
+
143
+ # publish model for each checkpoint
144
+ publish_model_infos = []
145
+ for model in model_infos:
146
+ model_publish_dir = osp.join(models_out,
147
+ model['raw_config'].rstrip('.py'))
148
+ model_name = osp.split(model['config'])[-1].split('.')[0]
149
+
150
+ publish_model_path = osp.join(model_publish_dir,
151
+ model_name + '_' + model['model_time'])
152
+ trained_model_path = osp.join(models_root, model['config'],
153
+ 'iter_{}.pth'.format(model['iters']))
154
+ if osp.exists(model_publish_dir):
155
+ for file in os.listdir(model_publish_dir):
156
+ if file.endswith('.pth'):
157
+ print(f'model {file} found')
158
+ model['model_path'] = osp.abspath(
159
+ osp.join(model_publish_dir, file))
160
+ break
161
+ if 'model_path' not in model:
162
+ print(f'dir {model_publish_dir} exists, no model found')
163
+
164
+ else:
165
+ mmcv.mkdir_or_exist(model_publish_dir)
166
+
167
+ # convert model
168
+ final_model_path = process_checkpoint(trained_model_path,
169
+ publish_model_path)
170
+ model['model_path'] = final_model_path
171
+
172
+ new_json_path = f'{model_name}-{model["log_json_path"]}'
173
+ # copy log
174
+ shutil.copy(
175
+ osp.join(models_root, model['config'], model['log_json_path']),
176
+ osp.join(model_publish_dir, new_json_path))
177
+ if args.all:
178
+ new_txt_path = new_json_path.rstrip('.json')
179
+ shutil.copy(
180
+ osp.join(models_root, model['config'],
181
+ model['log_json_path'].rstrip('.json')),
182
+ osp.join(model_publish_dir, new_txt_path))
183
+
184
+ if args.all:
185
+ # copy config to guarantee reproducibility
186
+ raw_config = osp.join(config_name, model['raw_config'])
187
+ mmcv.Config.fromfile(raw_config).dump(
188
+ osp.join(model_publish_dir, osp.basename(raw_config)))
189
+
190
+ publish_model_infos.append(model)
191
+
192
+ models = dict(models=publish_model_infos)
193
+ mmcv.dump(models, osp.join(models_out, args.out_file))
194
+
195
+
196
+ if __name__ == '__main__':
197
+ main()
FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/.dev/upload_modelzoo.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import os
3
+ import os.path as osp
4
+
5
+ import oss2
6
+
7
+ ACCESS_KEY_ID = os.getenv('OSS_ACCESS_KEY_ID', None)
8
+ ACCESS_KEY_SECRET = os.getenv('OSS_ACCESS_KEY_SECRET', None)
9
+ BUCKET_NAME = 'openmmlab'
10
+ ENDPOINT = 'https://oss-accelerate.aliyuncs.com'
11
+
12
+
13
+ def parse_args():
14
+ parser = argparse.ArgumentParser(description='Upload models to OSS')
15
+ parser.add_argument('model_zoo', type=str, help='model_zoo input')
16
+ parser.add_argument(
17
+ '--dst-folder',
18
+ type=str,
19
+ default='mmsegmentation/v0.5',
20
+ help='destination folder')
21
+ args = parser.parse_args()
22
+ return args
23
+
24
+
25
+ def main():
26
+ args = parse_args()
27
+ model_zoo = args.model_zoo
28
+ dst_folder = args.dst_folder
29
+ bucket = oss2.Bucket(
30
+ oss2.Auth(ACCESS_KEY_ID, ACCESS_KEY_SECRET), ENDPOINT, BUCKET_NAME)
31
+
32
+ for root, dirs, files in os.walk(model_zoo):
33
+ for file in files:
34
+ file_path = osp.relpath(osp.join(root, file), model_zoo)
35
+ print(f'Uploading {file_path}')
36
+
37
+ oss2.resumable_upload(bucket, osp.join(dst_folder, file_path),
38
+ osp.join(model_zoo, file_path))
39
+ bucket.put_object_acl(
40
+ osp.join(dst_folder, file_path), oss2.OBJECT_ACL_PUBLIC_READ)
41
+
42
+
43
+ if __name__ == '__main__':
44
+ main()
FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/.github/CODE_OF_CONDUCT.md ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Contributor Covenant Code of Conduct
2
+
3
+ ## Our Pledge
4
+
5
+ In the interest of fostering an open and welcoming environment, we as
6
+ contributors and maintainers pledge to making participation in our project and
7
+ our community a harassment-free experience for everyone, regardless of age, body
8
+ size, disability, ethnicity, sex characteristics, gender identity and expression,
9
+ level of experience, education, socio-economic status, nationality, personal
10
+ appearance, race, religion, or sexual identity and orientation.
11
+
12
+ ## Our Standards
13
+
14
+ Examples of behavior that contributes to creating a positive environment
15
+ include:
16
+
17
+ * Using welcoming and inclusive language
18
+ * Being respectful of differing viewpoints and experiences
19
+ * Gracefully accepting constructive criticism
20
+ * Focusing on what is best for the community
21
+ * Showing empathy towards other community members
22
+
23
+ Examples of unacceptable behavior by participants include:
24
+
25
+ * The use of sexualized language or imagery and unwelcome sexual attention or
26
+ advances
27
+ * Trolling, insulting/derogatory comments, and personal or political attacks
28
+ * Public or private harassment
29
+ * Publishing others' private information, such as a physical or electronic
30
+ address, without explicit permission
31
+ * Other conduct which could reasonably be considered inappropriate in a
32
+ professional setting
33
+
34
+ ## Our Responsibilities
35
+
36
+ Project maintainers are responsible for clarifying the standards of acceptable
37
+ behavior and are expected to take appropriate and fair corrective action in
38
+ response to any instances of unacceptable behavior.
39
+
40
+ Project maintainers have the right and responsibility to remove, edit, or
41
+ reject comments, commits, code, wiki edits, issues, and other contributions
42
+ that are not aligned to this Code of Conduct, or to ban temporarily or
43
+ permanently any contributor for other behaviors that they deem inappropriate,
44
+ threatening, offensive, or harmful.
45
+
46
+ ## Scope
47
+
48
+ This Code of Conduct applies both within project spaces and in public spaces
49
+ when an individual is representing the project or its community. Examples of
50
+ representing a project or community include using an official project e-mail
51
+ address, posting via an official social media account, or acting as an appointed
52
+ representative at an online or offline event. Representation of a project may be
53
+ further defined and clarified by project maintainers.
54
+
55
+ ## Enforcement
56
+
57
+ Instances of abusive, harassing, or otherwise unacceptable behavior may be
58
+ reported by contacting the project team at [email protected]. All
59
+ complaints will be reviewed and investigated and will result in a response that
60
+ is deemed necessary and appropriate to the circumstances. The project team is
61
+ obligated to maintain confidentiality with regard to the reporter of an incident.
62
+ Further details of specific enforcement policies may be posted separately.
63
+
64
+ Project maintainers who do not follow or enforce the Code of Conduct in good
65
+ faith may face temporary or permanent repercussions as determined by other
66
+ members of the project's leadership.
67
+
68
+ ## Attribution
69
+
70
+ This Code of Conduct is adapted from the [Contributor Covenant][homepage], version 1.4,
71
+ available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html
72
+
73
+ [homepage]: https://www.contributor-covenant.org
74
+
75
+ For answers to common questions about this code of conduct, see
76
+ https://www.contributor-covenant.org/faq
FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/.github/CONTRIBUTING.md ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Contributing to mmsegmentation
2
+
3
+ All kinds of contributions are welcome, including but not limited to the following.
4
+
5
+ - Fixes (typo, bugs)
6
+ - New features and components
7
+
8
+ ## Workflow
9
+
10
+ 1. fork and pull the latest mmsegmentation
11
+ 2. checkout a new branch (do not use master branch for PRs)
12
+ 3. commit your changes
13
+ 4. create a PR
14
+
15
+ Note
16
+
17
+ - If you plan to add some new features that involve large changes, it is encouraged to open an issue for discussion first.
18
+ - If you are the author of some papers and would like to include your method to mmsegmentation,
19
+ please contact Kai Chen (chenkaidev[at]gmail[dot]com). We will much appreciate your contribution.
20
+
21
+ ## Code style
22
+
23
+ ### Python
24
+
25
+ We adopt [PEP8](https://www.python.org/dev/peps/pep-0008/) as the preferred code style.
26
+
27
+ We use the following tools for linting and formatting:
28
+
29
+ - [flake8](http://flake8.pycqa.org/en/latest/): linter
30
+ - [yapf](https://github.com/google/yapf): formatter
31
+ - [isort](https://github.com/timothycrosley/isort): sort imports
32
+
33
+ Style configurations of yapf and isort can be found in [setup.cfg](../setup.cfg) and [.isort.cfg](../.isort.cfg).
34
+
35
+ We use [pre-commit hook](https://pre-commit.com/) that checks and formats for `flake8`, `yapf`, `isort`, `trailing whitespaces`,
36
+ fixes `end-of-files`, sorts `requirments.txt` automatically on every commit.
37
+ The config for a pre-commit hook is stored in [.pre-commit-config](../.pre-commit-config.yaml).
38
+
39
+ After you clone the repository, you will need to install initialize pre-commit hook.
40
+
41
+ ```shell
42
+ pip install -U pre-commit
43
+ ```
44
+
45
+ From the repository folder
46
+
47
+ ```shell
48
+ pre-commit install
49
+ ```
50
+
51
+ After this on every commit check code linters and formatter will be enforced.
52
+
53
+ >Before you create a PR, make sure that your code lints and is formatted by yapf.
54
+
55
+ ### C++ and CUDA
56
+
57
+ We follow the [Google C++ Style Guide](https://google.github.io/styleguide/cppguide.html).
FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/.github/ISSUE_TEMPLATE/config.yml ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ blank_issues_enabled: false
2
+
3
+ contact_links:
4
+ - name: MMSegmentation Documentation
5
+ url: https://mmsegmentation.readthedocs.io
6
+ about: Check the docs and FAQ to see if you question is already anwsered.
FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/.github/ISSUE_TEMPLATE/error-report.md ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ name: Error report
3
+ about: Create a report to help us improve
4
+ title: ''
5
+ labels: ''
6
+ assignees: ''
7
+
8
+ ---
9
+
10
+ Thanks for your error report and we appreciate it a lot.
11
+
12
+ **Checklist**
13
+
14
+ 1. I have searched related issues but cannot get the expected help.
15
+ 2. The bug has not been fixed in the latest version.
16
+
17
+ **Describe the bug**
18
+ A clear and concise description of what the bug is.
19
+
20
+ **Reproduction**
21
+
22
+ 1. What command or script did you run?
23
+
24
+ ```none
25
+ A placeholder for the command.
26
+ ```
27
+
28
+ 2. Did you make any modifications on the code or config? Did you understand what you have modified?
29
+ 3. What dataset did you use?
30
+
31
+ **Environment**
32
+
33
+ 1. Please run `python mmseg/utils/collect_env.py` to collect necessary environment infomation and paste it here.
34
+ 2. You may add addition that may be helpful for locating the problem, such as
35
+ - How you installed PyTorch [e.g., pip, conda, source]
36
+ - Other environment variables that may be related (such as `$PATH`, `$LD_LIBRARY_PATH`, `$PYTHONPATH`, etc.)
37
+
38
+ **Error traceback**
39
+
40
+ If applicable, paste the error trackback here.
41
+
42
+ ```none
43
+ A placeholder for trackback.
44
+ ```
45
+
46
+ **Bug fix**
47
+
48
+ If you have already identified the reason, you can provide the information here. If you are willing to create a PR to fix it, please also leave a comment here and that would be much appreciated!
FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/.github/ISSUE_TEMPLATE/feature_request.md ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ name: Feature request
3
+ about: Suggest an idea for this project
4
+ title: ''
5
+ labels: ''
6
+ assignees: ''
7
+
8
+ ---
9
+
10
+ # Describe the feature
11
+
12
+ **Motivation**
13
+ A clear and concise description of the motivation of the feature.
14
+ Ex1. It is inconvenient when [....].
15
+ Ex2. There is a recent paper [....], which is very helpful for [....].
16
+
17
+ **Related resources**
18
+ If there is an official code release or third-party implementations, please also provide the information here, which would be very helpful.
19
+
20
+ **Additional context**
21
+ Add any other context or screenshots about the feature request here.
22
+ If you would like to implement the feature and create a PR, please leave a comment here and that would be much appreciated.
FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/.github/ISSUE_TEMPLATE/general_questions.md ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ name: General questions
3
+ about: Ask general questions to get help
4
+ title: ''
5
+ labels: ''
6
+ assignees: ''
7
+
8
+ ---
FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/.github/workflows/build.yml ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: build
2
+
3
+ on: [push, pull_request]
4
+
5
+ jobs:
6
+ lint:
7
+ runs-on: ubuntu-latest
8
+ steps:
9
+ - uses: actions/checkout@v2
10
+ - name: Set up Python 3.7
11
+ uses: actions/setup-python@v1
12
+ with:
13
+ python-version: 3.7
14
+ - name: Install pre-commit hook
15
+ run: |
16
+ pip install pre-commit
17
+ pre-commit install
18
+ - name: Linting
19
+ run: pre-commit run --all-files
20
+ - name: Check docstring
21
+ run: |
22
+ pip install interrogate
23
+ interrogate -v --ignore-init-method --ignore-module --ignore-nested-functions --exclude mmseg/ops --ignore-regex "__repr__" --fail-under 80 mmseg
24
+
25
+ build:
26
+ env:
27
+ CUDA: 10.1.105-1
28
+ CUDA_SHORT: 10.1
29
+ UBUNTU_VERSION: ubuntu1804
30
+ FORCE_CUDA: 1
31
+ MMCV_CUDA_ARGS: -gencode=arch=compute_61,code=sm_61
32
+ runs-on: ubuntu-latest
33
+ strategy:
34
+ matrix:
35
+ python-version: [3.6, 3.7]
36
+ torch: [1.3.0+cpu, 1.5.0+cpu]
37
+ include:
38
+ - torch: 1.3.0+cpu
39
+ torchvision: 0.4.1+cpu
40
+ - torch: 1.5.0+cpu
41
+ torchvision: 0.6.0+cpu
42
+ - torch: 1.5.0+cpu
43
+ torchvision: 0.6.0+cpu
44
+ python-version: 3.8
45
+ - torch: 1.5.0+cu101
46
+ torchvision: 0.6.0+cu101
47
+ python-version: 3.7
48
+ - torch: 1.6.0+cu101
49
+ torchvision: 0.7.0+cu101
50
+ python-version: 3.7
51
+
52
+ steps:
53
+ - uses: actions/checkout@v2
54
+ - name: Set up Python ${{ matrix.python-version }}
55
+ uses: actions/setup-python@v2
56
+ with:
57
+ python-version: ${{ matrix.python-version }}
58
+ - name: Install CUDA
59
+ if: ${{matrix.torch == '1.5.0+cu101'}}
60
+ run: |
61
+ export INSTALLER=cuda-repo-${UBUNTU_VERSION}_${CUDA}_amd64.deb
62
+ wget http://developer.download.nvidia.com/compute/cuda/repos/${UBUNTU_VERSION}/x86_64/${INSTALLER}
63
+ sudo dpkg -i ${INSTALLER}
64
+ wget https://developer.download.nvidia.com/compute/cuda/repos/${UBUNTU_VERSION}/x86_64/7fa2af80.pub
65
+ sudo apt-key add 7fa2af80.pub
66
+ sudo apt update -qq
67
+ sudo apt install -y cuda-${CUDA_SHORT/./-} cuda-cufft-dev-${CUDA_SHORT/./-}
68
+ sudo apt clean
69
+ export CUDA_HOME=/usr/local/cuda-${CUDA_SHORT}
70
+ export LD_LIBRARY_PATH=${CUDA_HOME}/lib64:${CUDA_HOME}/include:${LD_LIBRARY_PATH}
71
+ export PATH=${CUDA_HOME}/bin:${PATH}
72
+ sudo apt-get install -y ninja-build
73
+ - name: Install Pillow
74
+ if: ${{matrix.torchvision == '0.4.1+cpu'}}
75
+ run: pip install Pillow==6.2.2
76
+ - name: Install PyTorch
77
+ run: pip install torch==${{matrix.torch}} torchvision==${{matrix.torchvision}} -f https://download.pytorch.org/whl/torch_stable.html
78
+ - name: Install mmseg dependencies
79
+ run: |
80
+ pip install mmcv-full==latest+torch${{matrix.torch}} -f https://download.openmmlab.com/mmcv/dist/index.html --use-deprecated=legacy-resolver
81
+ pip install -r requirements.txt
82
+ - name: Build and install
83
+ run: rm -rf .eggs && pip install -e .
84
+ - name: Run unittests and generate coverage report
85
+ run: |
86
+ coverage run --branch --source mmseg -m pytest tests/
87
+ coverage xml
88
+ coverage report -m
89
+ # Only upload coverage report for python3.7 && pytorch1.5
90
+ - name: Upload coverage to Codecov
91
+ if: ${{matrix.torch == '1.5.0+cu101' && matrix.python-version == '3.7'}}
92
+ uses: codecov/[email protected]
93
+ with:
94
+ file: ./coverage.xml
95
+ flags: unittests
96
+ env_vars: OS,PYTHON
97
+ name: codecov-umbrella
98
+ fail_ci_if_error: false
FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/.github/workflows/deploy.yml ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: deploy
2
+
3
+ on: push
4
+
5
+ jobs:
6
+ build-n-publish:
7
+ runs-on: ubuntu-latest
8
+ if: startsWith(github.event.ref, 'refs/tags')
9
+ steps:
10
+ - uses: actions/checkout@v2
11
+ - name: Set up Python 3.7
12
+ uses: actions/setup-python@v2
13
+ with:
14
+ python-version: 3.7
15
+ - name: Build MMSegmentation
16
+ run: |
17
+ pip install wheel
18
+ python setup.py sdist bdist_wheel
19
+ - name: Publish distribution to PyPI
20
+ run: |
21
+ pip install twine
22
+ twine upload dist/* -u __token__ -p ${{ secrets.pypi_password }}
FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/.gitignore ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Byte-compiled / optimized / DLL files
2
+ __pycache__/
3
+ *.py[cod]
4
+ *$py.class
5
+
6
+ # C extensions
7
+ *.so
8
+
9
+ # Distribution / packaging
10
+ .Python
11
+ build/
12
+ develop-eggs/
13
+ dist/
14
+ downloads/
15
+ eggs/
16
+ .eggs/
17
+ lib/
18
+ lib64/
19
+ parts/
20
+ sdist/
21
+ var/
22
+ wheels/
23
+ *.egg-info/
24
+ .installed.cfg
25
+ *.egg
26
+ MANIFEST
27
+
28
+ # PyInstaller
29
+ # Usually these files are written by a python script from a template
30
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
31
+ *.manifest
32
+ *.spec
33
+
34
+ # Installer logs
35
+ pip-log.txt
36
+ pip-delete-this-directory.txt
37
+
38
+ # Unit test / coverage reports
39
+ htmlcov/
40
+ .tox/
41
+ .coverage
42
+ .coverage.*
43
+ .cache
44
+ nosetests.xml
45
+ coverage.xml
46
+ *.cover
47
+ .hypothesis/
48
+ .pytest_cache/
49
+
50
+ # Translations
51
+ *.mo
52
+ *.pot
53
+
54
+ # Django stuff:
55
+ *.log
56
+ local_settings.py
57
+ db.sqlite3
58
+
59
+ # Flask stuff:
60
+ instance/
61
+ .webassets-cache
62
+
63
+ # Scrapy stuff:
64
+ .scrapy
65
+
66
+ # Sphinx documentation
67
+ docs/_build/
68
+
69
+ # PyBuilder
70
+ target/
71
+
72
+ # Jupyter Notebook
73
+ .ipynb_checkpoints
74
+
75
+ # pyenv
76
+ .python-version
77
+
78
+ # celery beat schedule file
79
+ celerybeat-schedule
80
+
81
+ # SageMath parsed files
82
+ *.sage.py
83
+
84
+ # Environments
85
+ .env
86
+ .venv
87
+ env/
88
+ venv/
89
+ ENV/
90
+ env.bak/
91
+ venv.bak/
92
+
93
+ # Spyder project settings
94
+ .spyderproject
95
+ .spyproject
96
+
97
+ # Rope project settings
98
+ .ropeproject
99
+
100
+ # mkdocs documentation
101
+ /site
102
+
103
+ # mypy
104
+ .mypy_cache/
105
+
106
+ data
107
+ .vscode
108
+ .idea
109
+
110
+ # custom
111
+ *.pkl
112
+ *.pkl.json
113
+ *.log.json
114
+ work_dirs/
115
+
116
+ # Pytorch
117
+ *.pth
FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/.pre-commit-config.yaml ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ repos:
2
+ - repo: https://gitlab.com/pycqa/flake8.git
3
+ rev: 3.8.3
4
+ hooks:
5
+ - id: flake8
6
+ - repo: https://github.com/asottile/seed-isort-config
7
+ rev: v2.2.0
8
+ hooks:
9
+ - id: seed-isort-config
10
+ - repo: https://github.com/timothycrosley/isort
11
+ rev: 4.3.21
12
+ hooks:
13
+ - id: isort
14
+ - repo: https://github.com/pre-commit/mirrors-yapf
15
+ rev: v0.30.0
16
+ hooks:
17
+ - id: yapf
18
+ - repo: https://github.com/pre-commit/pre-commit-hooks
19
+ rev: v3.1.0
20
+ hooks:
21
+ - id: trailing-whitespace
22
+ - id: check-yaml
23
+ - id: end-of-file-fixer
24
+ - id: requirements-txt-fixer
25
+ - id: double-quote-string-fixer
26
+ - id: check-merge-conflict
27
+ - id: fix-encoding-pragma
28
+ args: ["--remove"]
29
+ - id: mixed-line-ending
30
+ args: ["--fix=lf"]
31
+ - repo: https://github.com/jumanjihouse/pre-commit-hooks
32
+ rev: 2.1.4
33
+ hooks:
34
+ - id: markdownlint
35
+ args: ["-r", "~MD002,~MD013,~MD029,~MD033,~MD034,~MD036"]
36
+ - repo: https://github.com/myint/docformatter
37
+ rev: v1.3.1
38
+ hooks:
39
+ - id: docformatter
40
+ args: ["--in-place", "--wrap-descriptions", "79"]
FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/.readthedocs.yml ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ version: 2
2
+
3
+ python:
4
+ version: 3.7
5
+ install:
6
+ - requirements: requirements/docs.txt
7
+ - requirements: requirements/readthedocs.txt
FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/LICENSE ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Copyright 2020 The MMSegmentation Authors. All rights reserved.
2
+
3
+ Apache License
4
+ Version 2.0, January 2004
5
+ http://www.apache.org/licenses/
6
+
7
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
8
+
9
+ 1. Definitions.
10
+
11
+ "License" shall mean the terms and conditions for use, reproduction,
12
+ and distribution as defined by Sections 1 through 9 of this document.
13
+
14
+ "Licensor" shall mean the copyright owner or entity authorized by
15
+ the copyright owner that is granting the License.
16
+
17
+ "Legal Entity" shall mean the union of the acting entity and all
18
+ other entities that control, are controlled by, or are under common
19
+ control with that entity. For the purposes of this definition,
20
+ "control" means (i) the power, direct or indirect, to cause the
21
+ direction or management of such entity, whether by contract or
22
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
23
+ outstanding shares, or (iii) beneficial ownership of such entity.
24
+
25
+ "You" (or "Your") shall mean an individual or Legal Entity
26
+ exercising permissions granted by this License.
27
+
28
+ "Source" form shall mean the preferred form for making modifications,
29
+ including but not limited to software source code, documentation
30
+ source, and configuration files.
31
+
32
+ "Object" form shall mean any form resulting from mechanical
33
+ transformation or translation of a Source form, including but
34
+ not limited to compiled object code, generated documentation,
35
+ and conversions to other media types.
36
+
37
+ "Work" shall mean the work of authorship, whether in Source or
38
+ Object form, made available under the License, as indicated by a
39
+ copyright notice that is included in or attached to the work
40
+ (an example is provided in the Appendix below).
41
+
42
+ "Derivative Works" shall mean any work, whether in Source or Object
43
+ form, that is based on (or derived from) the Work and for which the
44
+ editorial revisions, annotations, elaborations, or other modifications
45
+ represent, as a whole, an original work of authorship. For the purposes
46
+ of this License, Derivative Works shall not include works that remain
47
+ separable from, or merely link (or bind by name) to the interfaces of,
48
+ the Work and Derivative Works thereof.
49
+
50
+ "Contribution" shall mean any work of authorship, including
51
+ the original version of the Work and any modifications or additions
52
+ to that Work or Derivative Works thereof, that is intentionally
53
+ submitted to Licensor for inclusion in the Work by the copyright owner
54
+ or by an individual or Legal Entity authorized to submit on behalf of
55
+ the copyright owner. For the purposes of this definition, "submitted"
56
+ means any form of electronic, verbal, or written communication sent
57
+ to the Licensor or its representatives, including but not limited to
58
+ communication on electronic mailing lists, source code control systems,
59
+ and issue tracking systems that are managed by, or on behalf of, the
60
+ Licensor for the purpose of discussing and improving the Work, but
61
+ excluding communication that is conspicuously marked or otherwise
62
+ designated in writing by the copyright owner as "Not a Contribution."
63
+
64
+ "Contributor" shall mean Licensor and any individual or Legal Entity
65
+ on behalf of whom a Contribution has been received by Licensor and
66
+ subsequently incorporated within the Work.
67
+
68
+ 2. Grant of Copyright License. Subject to the terms and conditions of
69
+ this License, each Contributor hereby grants to You a perpetual,
70
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
71
+ copyright license to reproduce, prepare Derivative Works of,
72
+ publicly display, publicly perform, sublicense, and distribute the
73
+ Work and such Derivative Works in Source or Object form.
74
+
75
+ 3. Grant of Patent License. Subject to the terms and conditions of
76
+ this License, each Contributor hereby grants to You a perpetual,
77
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
78
+ (except as stated in this section) patent license to make, have made,
79
+ use, offer to sell, sell, import, and otherwise transfer the Work,
80
+ where such license applies only to those patent claims licensable
81
+ by such Contributor that are necessarily infringed by their
82
+ Contribution(s) alone or by combination of their Contribution(s)
83
+ with the Work to which such Contribution(s) was submitted. If You
84
+ institute patent litigation against any entity (including a
85
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
86
+ or a Contribution incorporated within the Work constitutes direct
87
+ or contributory patent infringement, then any patent licenses
88
+ granted to You under this License for that Work shall terminate
89
+ as of the date such litigation is filed.
90
+
91
+ 4. Redistribution. You may reproduce and distribute copies of the
92
+ Work or Derivative Works thereof in any medium, with or without
93
+ modifications, and in Source or Object form, provided that You
94
+ meet the following conditions:
95
+
96
+ (a) You must give any other recipients of the Work or
97
+ Derivative Works a copy of this License; and
98
+
99
+ (b) You must cause any modified files to carry prominent notices
100
+ stating that You changed the files; and
101
+
102
+ (c) You must retain, in the Source form of any Derivative Works
103
+ that You distribute, all copyright, patent, trademark, and
104
+ attribution notices from the Source form of the Work,
105
+ excluding those notices that do not pertain to any part of
106
+ the Derivative Works; and
107
+
108
+ (d) If the Work includes a "NOTICE" text file as part of its
109
+ distribution, then any Derivative Works that You distribute must
110
+ include a readable copy of the attribution notices contained
111
+ within such NOTICE file, excluding those notices that do not
112
+ pertain to any part of the Derivative Works, in at least one
113
+ of the following places: within a NOTICE text file distributed
114
+ as part of the Derivative Works; within the Source form or
115
+ documentation, if provided along with the Derivative Works; or,
116
+ within a display generated by the Derivative Works, if and
117
+ wherever such third-party notices normally appear. The contents
118
+ of the NOTICE file are for informational purposes only and
119
+ do not modify the License. You may add Your own attribution
120
+ notices within Derivative Works that You distribute, alongside
121
+ or as an addendum to the NOTICE text from the Work, provided
122
+ that such additional attribution notices cannot be construed
123
+ as modifying the License.
124
+
125
+ You may add Your own copyright statement to Your modifications and
126
+ may provide additional or different license terms and conditions
127
+ for use, reproduction, or distribution of Your modifications, or
128
+ for any such Derivative Works as a whole, provided Your use,
129
+ reproduction, and distribution of the Work otherwise complies with
130
+ the conditions stated in this License.
131
+
132
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
133
+ any Contribution intentionally submitted for inclusion in the Work
134
+ by You to the Licensor shall be under the terms and conditions of
135
+ this License, without any additional terms or conditions.
136
+ Notwithstanding the above, nothing herein shall supersede or modify
137
+ the terms of any separate license agreement you may have executed
138
+ with Licensor regarding such Contributions.
139
+
140
+ 6. Trademarks. This License does not grant permission to use the trade
141
+ names, trademarks, service marks, or product names of the Licensor,
142
+ except as required for reasonable and customary use in describing the
143
+ origin of the Work and reproducing the content of the NOTICE file.
144
+
145
+ 7. Disclaimer of Warranty. Unless required by applicable law or
146
+ agreed to in writing, Licensor provides the Work (and each
147
+ Contributor provides its Contributions) on an "AS IS" BASIS,
148
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
149
+ implied, including, without limitation, any warranties or conditions
150
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
151
+ PARTICULAR PURPOSE. You are solely responsible for determining the
152
+ appropriateness of using or redistributing the Work and assume any
153
+ risks associated with Your exercise of permissions under this License.
154
+
155
+ 8. Limitation of Liability. In no event and under no legal theory,
156
+ whether in tort (including negligence), contract, or otherwise,
157
+ unless required by applicable law (such as deliberate and grossly
158
+ negligent acts) or agreed to in writing, shall any Contributor be
159
+ liable to You for damages, including any direct, indirect, special,
160
+ incidental, or consequential damages of any character arising as a
161
+ result of this License or out of the use or inability to use the
162
+ Work (including but not limited to damages for loss of goodwill,
163
+ work stoppage, computer failure or malfunction, or any and all
164
+ other commercial damages or losses), even if such Contributor
165
+ has been advised of the possibility of such damages.
166
+
167
+ 9. Accepting Warranty or Additional Liability. While redistributing
168
+ the Work or Derivative Works thereof, You may choose to offer,
169
+ and charge a fee for, acceptance of support, warranty, indemnity,
170
+ or other liability obligations and/or rights consistent with this
171
+ License. However, in accepting such obligations, You may act only
172
+ on Your own behalf and on Your sole responsibility, not on behalf
173
+ of any other Contributor, and only if You agree to indemnify,
174
+ defend, and hold each Contributor harmless for any liability
175
+ incurred by, or claims asserted against, such Contributor by reason
176
+ of your accepting any such warranty or additional liability.
177
+
178
+ END OF TERMS AND CONDITIONS
179
+
180
+ APPENDIX: How to apply the Apache License to your work.
181
+
182
+ To apply the Apache License to your work, attach the following
183
+ boilerplate notice, with the fields enclosed by brackets "[]"
184
+ replaced with your own identifying information. (Don't include
185
+ the brackets!) The text should be enclosed in the appropriate
186
+ comment syntax for the file format. We also recommend that a
187
+ file or class name and description of purpose be included on the
188
+ same "printed page" as the copyright notice for easier
189
+ identification within third-party archives.
190
+
191
+ Copyright 2020 The MMSegmentation Authors.
192
+
193
+ Licensed under the Apache License, Version 2.0 (the "License");
194
+ you may not use this file except in compliance with the License.
195
+ You may obtain a copy of the License at
196
+
197
+ http://www.apache.org/licenses/LICENSE-2.0
198
+
199
+ Unless required by applicable law or agreed to in writing, software
200
+ distributed under the License is distributed on an "AS IS" BASIS,
201
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
202
+ See the License for the specific language governing permissions and
203
+ limitations under the License.
204
+
205
+
206
+ ======================================================================================
207
+ Swin-Transformer-Semantic-Segmentation Subcomponents:
208
+
209
+ The Swin-Transformer-Semantic-Segmentation project contains subcomponents with separate
210
+ copyright notices and license terms. Your use of the source code for the these
211
+ subcomponents is subject to the terms and conditions of the following licenses.
212
+
213
+ =======================================================================================
214
+ MIT license
215
+ =======================================================================================
216
+
217
+ The following components are provided under an MIT license.
218
+
219
+ 1. swin_transformer.py - For details, mmseg/models/backbones/swin_transformer.py
220
+ Copyright (c) 2021 Microsoft
FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/README.md ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Swin Transformer for Semantic Segmentaion
2
+
3
+ This repo contains the supported code and configuration files to reproduce semantic segmentaion results of [Swin Transformer](https://arxiv.org/pdf/2103.14030.pdf). It is based on [mmsegmentaion](https://github.com/open-mmlab/mmsegmentation/tree/v0.11.0).
4
+
5
+ ## Updates
6
+
7
+ ***05/11/2021*** Models for [MoBY](https://github.com/SwinTransformer/Transformer-SSL) are released
8
+
9
+ ***04/12/2021*** Initial commits
10
+
11
+ ## Results and Models
12
+
13
+ ### ADE20K
14
+
15
+ | Backbone | Method | Crop Size | Lr Schd | mIoU | mIoU (ms+flip) | #params | FLOPs | config | log | model |
16
+ | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
17
+ | Swin-T | UPerNet | 512x512 | 160K | 44.51 | 45.81 | 60M | 945G | [config](configs/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k.py) | [github](https://github.com/SwinTransformer/storage/releases/download/v1.0.1/upernet_swin_tiny_patch4_window7_512x512.log.json)/[baidu](https://pan.baidu.com/s/1dq0DdS17dFcmAzHlM_1rgw) | [github](https://github.com/SwinTransformer/storage/releases/download/v1.0.1/upernet_swin_tiny_patch4_window7_512x512.pth)/[baidu](https://pan.baidu.com/s/17VmmppX-PUKuek9T5H3Iqw) |
18
+ | Swin-S | UperNet | 512x512 | 160K | 47.64 | 49.47 | 81M | 1038G | [config](configs/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k.py) | [github](https://github.com/SwinTransformer/storage/releases/download/v1.0.1/upernet_swin_small_patch4_window7_512x512.log.json)/[baidu](https://pan.baidu.com/s/1ko3SVKPzH9x5B7SWCFxlig) | [github](https://github.com/SwinTransformer/storage/releases/download/v1.0.1/upernet_swin_small_patch4_window7_512x512.pth)/[baidu](https://pan.baidu.com/s/184em63etTMsf0cR_NX9zNg) |
19
+ | Swin-B | UperNet | 512x512 | 160K | 48.13 | 49.72 | 121M | 1188G | [config](configs/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k.py) | [github](https://github.com/SwinTransformer/storage/releases/download/v1.0.1/upernet_swin_base_patch4_window7_512x512.log.json)/[baidu](https://pan.baidu.com/s/1YlXXiB3GwUKhHobUajlIaQ) | [github](https://github.com/SwinTransformer/storage/releases/download/v1.0.1/upernet_swin_base_patch4_window7_512x512.pth)/[baidu](https://pan.baidu.com/s/12B2dY_niMirwtu64_9AMbg) |
20
+
21
+ **Notes**:
22
+
23
+ - **Pre-trained models can be downloaded from [Swin Transformer for ImageNet Classification](https://github.com/microsoft/Swin-Transformer)**.
24
+ - Access code for `baidu` is `swin`.
25
+
26
+ ## Results of MoBY with Swin Transformer
27
+
28
+ ### ADE20K
29
+
30
+ | Backbone | Method | Crop Size | Lr Schd | mIoU | mIoU (ms+flip) | #params | FLOPs | config | log | model |
31
+ | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
32
+ | Swin-T | UPerNet | 512x512 | 160K | 44.06 | 45.58 | 60M | 945G | [config](configs/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k.py) | [github](https://github.com/SwinTransformer/storage/releases/download/v1.0.3/moby_upernet_swin_tiny_patch4_window7_512x512.log.json)/[baidu](https://pan.baidu.com/s/1i0EMiapoQ-otkDmx-_cJHg) | [github](https://github.com/SwinTransformer/storage/releases/download/v1.0.3/moby_upernet_swin_tiny_patch4_window7_512x512.pth)/[baidu](https://pan.baidu.com/s/1BYgtgkHQV89bGC7LQLS7Jw) |
33
+
34
+ **Notes**:
35
+
36
+ - The learning rate needs to be tuned for best practice.
37
+ - MoBY pre-trained models can be downloaded from [MoBY with Swin Transformer](https://github.com/SwinTransformer/Transformer-SSL).
38
+
39
+ ## Usage
40
+
41
+ ### Installation
42
+
43
+ Please refer to [get_started.md](https://github.com/open-mmlab/mmsegmentation/blob/master/docs/get_started.md#installation) for installation and dataset preparation.
44
+
45
+ ### Inference
46
+ ```
47
+ # single-gpu testing
48
+ python tools/test.py <CONFIG_FILE> <SEG_CHECKPOINT_FILE> --eval mIoU
49
+
50
+ # multi-gpu testing
51
+ tools/dist_test.sh <CONFIG_FILE> <SEG_CHECKPOINT_FILE> <GPU_NUM> --eval mIoU
52
+
53
+ # multi-gpu, multi-scale testing
54
+ tools/dist_test.sh <CONFIG_FILE> <SEG_CHECKPOINT_FILE> <GPU_NUM> --aug-test --eval mIoU
55
+ ```
56
+
57
+ ### Training
58
+
59
+ To train with pre-trained models, run:
60
+ ```
61
+ # single-gpu training
62
+ python tools/train.py <CONFIG_FILE> --options model.pretrained=<PRETRAIN_MODEL> [model.backbone.use_checkpoint=True] [other optional arguments]
63
+
64
+ # multi-gpu training
65
+ tools/dist_train.sh <CONFIG_FILE> <GPU_NUM> --options model.pretrained=<PRETRAIN_MODEL> [model.backbone.use_checkpoint=True] [other optional arguments]
66
+ ```
67
+ For example, to train an UPerNet model with a `Swin-T` backbone and 8 gpus, run:
68
+ ```
69
+ tools/dist_train.sh configs/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k.py 8 --options model.pretrained=<PRETRAIN_MODEL>
70
+ ```
71
+
72
+ **Notes:**
73
+ - `use_checkpoint` is used to save GPU memory. Please refer to [this page](https://pytorch.org/docs/stable/checkpoint.html) for more details.
74
+ - The default learning rate and training schedule is for 8 GPUs and 2 imgs/gpu.
75
+
76
+
77
+ ## Citing Swin Transformer
78
+ ```
79
+ @article{liu2021Swin,
80
+ title={Swin Transformer: Hierarchical Vision Transformer using Shifted Windows},
81
+ author={Liu, Ze and Lin, Yutong and Cao, Yue and Hu, Han and Wei, Yixuan and Zhang, Zheng and Lin, Stephen and Guo, Baining},
82
+ journal={arXiv preprint arXiv:2103.14030},
83
+ year={2021}
84
+ }
85
+ ```
86
+
87
+ ## Other Links
88
+
89
+ > **Image Classification**: See [Swin Transformer for Image Classification](https://github.com/microsoft/Swin-Transformer).
90
+
91
+ > **Object Detection**: See [Swin Transformer for Object Detection](https://github.com/SwinTransformer/Swin-Transformer-Object-Detection).
92
+
93
+ > **Self-Supervised Learning**: See [MoBY with Swin Transformer](https://github.com/SwinTransformer/Transformer-SSL).
94
+
95
+ > **Video Recognition**, See [Video Swin Transformer](https://github.com/SwinTransformer/Video-Swin-Transformer).
FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/configs/_base_/datasets/ade20k.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # dataset settings
2
+ dataset_type = 'ADE20KDataset'
3
+ data_root = 'data/ade/ADEChallengeData2016'
4
+ img_norm_cfg = dict(
5
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
6
+ crop_size = (512, 512)
7
+ train_pipeline = [
8
+ dict(type='LoadImageFromFile'),
9
+ dict(type='LoadAnnotations', reduce_zero_label=True),
10
+ dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),
11
+ dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
12
+ dict(type='RandomFlip', prob=0.5),
13
+ dict(type='PhotoMetricDistortion'),
14
+ dict(type='Normalize', **img_norm_cfg),
15
+ dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255),
16
+ dict(type='DefaultFormatBundle'),
17
+ dict(type='Collect', keys=['img', 'gt_semantic_seg']),
18
+ ]
19
+ test_pipeline = [
20
+ dict(type='LoadImageFromFile'),
21
+ dict(
22
+ type='MultiScaleFlipAug',
23
+ img_scale=(2048, 512),
24
+ # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
25
+ flip=False,
26
+ transforms=[
27
+ dict(type='Resize', keep_ratio=True),
28
+ dict(type='RandomFlip'),
29
+ dict(type='Normalize', **img_norm_cfg),
30
+ dict(type='ImageToTensor', keys=['img']),
31
+ dict(type='Collect', keys=['img']),
32
+ ])
33
+ ]
34
+ data = dict(
35
+ samples_per_gpu=4,
36
+ workers_per_gpu=4,
37
+ train=dict(
38
+ type=dataset_type,
39
+ data_root=data_root,
40
+ img_dir='images/training',
41
+ ann_dir='annotations/training',
42
+ pipeline=train_pipeline),
43
+ val=dict(
44
+ type=dataset_type,
45
+ data_root=data_root,
46
+ img_dir='images/validation',
47
+ ann_dir='annotations/validation',
48
+ pipeline=test_pipeline),
49
+ test=dict(
50
+ type=dataset_type,
51
+ data_root=data_root,
52
+ img_dir='images/validation',
53
+ ann_dir='annotations/validation',
54
+ pipeline=test_pipeline))
FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/configs/_base_/datasets/chase_db1.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # dataset settings
2
+ dataset_type = 'ChaseDB1Dataset'
3
+ data_root = 'data/CHASE_DB1'
4
+ img_norm_cfg = dict(
5
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
6
+ img_scale = (960, 999)
7
+ crop_size = (128, 128)
8
+ train_pipeline = [
9
+ dict(type='LoadImageFromFile'),
10
+ dict(type='LoadAnnotations'),
11
+ dict(type='Resize', img_scale=img_scale, ratio_range=(0.5, 2.0)),
12
+ dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
13
+ dict(type='RandomFlip', prob=0.5),
14
+ dict(type='PhotoMetricDistortion'),
15
+ dict(type='Normalize', **img_norm_cfg),
16
+ dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255),
17
+ dict(type='DefaultFormatBundle'),
18
+ dict(type='Collect', keys=['img', 'gt_semantic_seg'])
19
+ ]
20
+ test_pipeline = [
21
+ dict(type='LoadImageFromFile'),
22
+ dict(
23
+ type='MultiScaleFlipAug',
24
+ img_scale=img_scale,
25
+ # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0],
26
+ flip=False,
27
+ transforms=[
28
+ dict(type='Resize', keep_ratio=True),
29
+ dict(type='RandomFlip'),
30
+ dict(type='Normalize', **img_norm_cfg),
31
+ dict(type='ImageToTensor', keys=['img']),
32
+ dict(type='Collect', keys=['img'])
33
+ ])
34
+ ]
35
+
36
+ data = dict(
37
+ samples_per_gpu=4,
38
+ workers_per_gpu=4,
39
+ train=dict(
40
+ type='RepeatDataset',
41
+ times=40000,
42
+ dataset=dict(
43
+ type=dataset_type,
44
+ data_root=data_root,
45
+ img_dir='images/training',
46
+ ann_dir='annotations/training',
47
+ pipeline=train_pipeline)),
48
+ val=dict(
49
+ type=dataset_type,
50
+ data_root=data_root,
51
+ img_dir='images/validation',
52
+ ann_dir='annotations/validation',
53
+ pipeline=test_pipeline),
54
+ test=dict(
55
+ type=dataset_type,
56
+ data_root=data_root,
57
+ img_dir='images/validation',
58
+ ann_dir='annotations/validation',
59
+ pipeline=test_pipeline))
FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/configs/_base_/datasets/cityscapes.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # dataset settings
2
+ dataset_type = 'CityscapesDataset'
3
+ data_root = 'data/cityscapes/'
4
+ img_norm_cfg = dict(
5
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
6
+ crop_size = (512, 1024)
7
+ train_pipeline = [
8
+ dict(type='LoadImageFromFile'),
9
+ dict(type='LoadAnnotations'),
10
+ dict(type='Resize', img_scale=(2048, 1024), ratio_range=(0.5, 2.0)),
11
+ dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
12
+ dict(type='RandomFlip', prob=0.5),
13
+ dict(type='PhotoMetricDistortion'),
14
+ dict(type='Normalize', **img_norm_cfg),
15
+ dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255),
16
+ dict(type='DefaultFormatBundle'),
17
+ dict(type='Collect', keys=['img', 'gt_semantic_seg']),
18
+ ]
19
+ test_pipeline = [
20
+ dict(type='LoadImageFromFile'),
21
+ dict(
22
+ type='MultiScaleFlipAug',
23
+ img_scale=(2048, 1024),
24
+ # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
25
+ flip=False,
26
+ transforms=[
27
+ dict(type='Resize', keep_ratio=True),
28
+ dict(type='RandomFlip'),
29
+ dict(type='Normalize', **img_norm_cfg),
30
+ dict(type='ImageToTensor', keys=['img']),
31
+ dict(type='Collect', keys=['img']),
32
+ ])
33
+ ]
34
+ data = dict(
35
+ samples_per_gpu=2,
36
+ workers_per_gpu=2,
37
+ train=dict(
38
+ type=dataset_type,
39
+ data_root=data_root,
40
+ img_dir='leftImg8bit/train',
41
+ ann_dir='gtFine/train',
42
+ pipeline=train_pipeline),
43
+ val=dict(
44
+ type=dataset_type,
45
+ data_root=data_root,
46
+ img_dir='leftImg8bit/val',
47
+ ann_dir='gtFine/val',
48
+ pipeline=test_pipeline),
49
+ test=dict(
50
+ type=dataset_type,
51
+ data_root=data_root,
52
+ img_dir='leftImg8bit/val',
53
+ ann_dir='gtFine/val',
54
+ pipeline=test_pipeline))
FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/configs/_base_/datasets/cityscapes_769x769.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ _base_ = './cityscapes.py'
2
+ img_norm_cfg = dict(
3
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
4
+ crop_size = (769, 769)
5
+ train_pipeline = [
6
+ dict(type='LoadImageFromFile'),
7
+ dict(type='LoadAnnotations'),
8
+ dict(type='Resize', img_scale=(2049, 1025), ratio_range=(0.5, 2.0)),
9
+ dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
10
+ dict(type='RandomFlip', prob=0.5),
11
+ dict(type='PhotoMetricDistortion'),
12
+ dict(type='Normalize', **img_norm_cfg),
13
+ dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255),
14
+ dict(type='DefaultFormatBundle'),
15
+ dict(type='Collect', keys=['img', 'gt_semantic_seg']),
16
+ ]
17
+ test_pipeline = [
18
+ dict(type='LoadImageFromFile'),
19
+ dict(
20
+ type='MultiScaleFlipAug',
21
+ img_scale=(2049, 1025),
22
+ # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
23
+ flip=False,
24
+ transforms=[
25
+ dict(type='Resize', keep_ratio=True),
26
+ dict(type='RandomFlip'),
27
+ dict(type='Normalize', **img_norm_cfg),
28
+ dict(type='ImageToTensor', keys=['img']),
29
+ dict(type='Collect', keys=['img']),
30
+ ])
31
+ ]
32
+ data = dict(
33
+ train=dict(pipeline=train_pipeline),
34
+ val=dict(pipeline=test_pipeline),
35
+ test=dict(pipeline=test_pipeline))
FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/configs/_base_/datasets/drive.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # dataset settings
2
+ dataset_type = 'DRIVEDataset'
3
+ data_root = 'data/DRIVE'
4
+ img_norm_cfg = dict(
5
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
6
+ img_scale = (584, 565)
7
+ crop_size = (64, 64)
8
+ train_pipeline = [
9
+ dict(type='LoadImageFromFile'),
10
+ dict(type='LoadAnnotations'),
11
+ dict(type='Resize', img_scale=img_scale, ratio_range=(0.5, 2.0)),
12
+ dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
13
+ dict(type='RandomFlip', prob=0.5),
14
+ dict(type='PhotoMetricDistortion'),
15
+ dict(type='Normalize', **img_norm_cfg),
16
+ dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255),
17
+ dict(type='DefaultFormatBundle'),
18
+ dict(type='Collect', keys=['img', 'gt_semantic_seg'])
19
+ ]
20
+ test_pipeline = [
21
+ dict(type='LoadImageFromFile'),
22
+ dict(
23
+ type='MultiScaleFlipAug',
24
+ img_scale=img_scale,
25
+ # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0],
26
+ flip=False,
27
+ transforms=[
28
+ dict(type='Resize', keep_ratio=True),
29
+ dict(type='RandomFlip'),
30
+ dict(type='Normalize', **img_norm_cfg),
31
+ dict(type='ImageToTensor', keys=['img']),
32
+ dict(type='Collect', keys=['img'])
33
+ ])
34
+ ]
35
+
36
+ data = dict(
37
+ samples_per_gpu=4,
38
+ workers_per_gpu=4,
39
+ train=dict(
40
+ type='RepeatDataset',
41
+ times=40000,
42
+ dataset=dict(
43
+ type=dataset_type,
44
+ data_root=data_root,
45
+ img_dir='images/training',
46
+ ann_dir='annotations/training',
47
+ pipeline=train_pipeline)),
48
+ val=dict(
49
+ type=dataset_type,
50
+ data_root=data_root,
51
+ img_dir='images/validation',
52
+ ann_dir='annotations/validation',
53
+ pipeline=test_pipeline),
54
+ test=dict(
55
+ type=dataset_type,
56
+ data_root=data_root,
57
+ img_dir='images/validation',
58
+ ann_dir='annotations/validation',
59
+ pipeline=test_pipeline))
FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/configs/_base_/datasets/hrf.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # dataset settings
2
+ dataset_type = 'HRFDataset'
3
+ data_root = 'data/HRF'
4
+ img_norm_cfg = dict(
5
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
6
+ img_scale = (2336, 3504)
7
+ crop_size = (256, 256)
8
+ train_pipeline = [
9
+ dict(type='LoadImageFromFile'),
10
+ dict(type='LoadAnnotations'),
11
+ dict(type='Resize', img_scale=img_scale, ratio_range=(0.5, 2.0)),
12
+ dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
13
+ dict(type='RandomFlip', prob=0.5),
14
+ dict(type='PhotoMetricDistortion'),
15
+ dict(type='Normalize', **img_norm_cfg),
16
+ dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255),
17
+ dict(type='DefaultFormatBundle'),
18
+ dict(type='Collect', keys=['img', 'gt_semantic_seg'])
19
+ ]
20
+ test_pipeline = [
21
+ dict(type='LoadImageFromFile'),
22
+ dict(
23
+ type='MultiScaleFlipAug',
24
+ img_scale=img_scale,
25
+ # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0],
26
+ flip=False,
27
+ transforms=[
28
+ dict(type='Resize', keep_ratio=True),
29
+ dict(type='RandomFlip'),
30
+ dict(type='Normalize', **img_norm_cfg),
31
+ dict(type='ImageToTensor', keys=['img']),
32
+ dict(type='Collect', keys=['img'])
33
+ ])
34
+ ]
35
+
36
+ data = dict(
37
+ samples_per_gpu=4,
38
+ workers_per_gpu=4,
39
+ train=dict(
40
+ type='RepeatDataset',
41
+ times=40000,
42
+ dataset=dict(
43
+ type=dataset_type,
44
+ data_root=data_root,
45
+ img_dir='images/training',
46
+ ann_dir='annotations/training',
47
+ pipeline=train_pipeline)),
48
+ val=dict(
49
+ type=dataset_type,
50
+ data_root=data_root,
51
+ img_dir='images/validation',
52
+ ann_dir='annotations/validation',
53
+ pipeline=test_pipeline),
54
+ test=dict(
55
+ type=dataset_type,
56
+ data_root=data_root,
57
+ img_dir='images/validation',
58
+ ann_dir='annotations/validation',
59
+ pipeline=test_pipeline))
FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/configs/_base_/datasets/pascal_context.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # dataset settings
2
+ dataset_type = 'PascalContextDataset'
3
+ data_root = 'data/VOCdevkit/VOC2010/'
4
+ img_norm_cfg = dict(
5
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
6
+
7
+ img_scale = (520, 520)
8
+ crop_size = (480, 480)
9
+
10
+ train_pipeline = [
11
+ dict(type='LoadImageFromFile'),
12
+ dict(type='LoadAnnotations'),
13
+ dict(type='Resize', img_scale=img_scale, ratio_range=(0.5, 2.0)),
14
+ dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
15
+ dict(type='RandomFlip', prob=0.5),
16
+ dict(type='PhotoMetricDistortion'),
17
+ dict(type='Normalize', **img_norm_cfg),
18
+ dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255),
19
+ dict(type='DefaultFormatBundle'),
20
+ dict(type='Collect', keys=['img', 'gt_semantic_seg']),
21
+ ]
22
+ test_pipeline = [
23
+ dict(type='LoadImageFromFile'),
24
+ dict(
25
+ type='MultiScaleFlipAug',
26
+ img_scale=img_scale,
27
+ # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
28
+ flip=False,
29
+ transforms=[
30
+ dict(type='Resize', keep_ratio=True),
31
+ dict(type='RandomFlip'),
32
+ dict(type='Normalize', **img_norm_cfg),
33
+ dict(type='ImageToTensor', keys=['img']),
34
+ dict(type='Collect', keys=['img']),
35
+ ])
36
+ ]
37
+ data = dict(
38
+ samples_per_gpu=4,
39
+ workers_per_gpu=4,
40
+ train=dict(
41
+ type=dataset_type,
42
+ data_root=data_root,
43
+ img_dir='JPEGImages',
44
+ ann_dir='SegmentationClassContext',
45
+ split='ImageSets/SegmentationContext/train.txt',
46
+ pipeline=train_pipeline),
47
+ val=dict(
48
+ type=dataset_type,
49
+ data_root=data_root,
50
+ img_dir='JPEGImages',
51
+ ann_dir='SegmentationClassContext',
52
+ split='ImageSets/SegmentationContext/val.txt',
53
+ pipeline=test_pipeline),
54
+ test=dict(
55
+ type=dataset_type,
56
+ data_root=data_root,
57
+ img_dir='JPEGImages',
58
+ ann_dir='SegmentationClassContext',
59
+ split='ImageSets/SegmentationContext/val.txt',
60
+ pipeline=test_pipeline))
FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/configs/_base_/datasets/pascal_voc12.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # dataset settings
2
+ dataset_type = 'PascalVOCDataset'
3
+ data_root = 'data/VOCdevkit/VOC2012'
4
+ img_norm_cfg = dict(
5
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
6
+ crop_size = (512, 512)
7
+ train_pipeline = [
8
+ dict(type='LoadImageFromFile'),
9
+ dict(type='LoadAnnotations'),
10
+ dict(type='Resize', img_scale=(2048, 512), ratio_range=(0.5, 2.0)),
11
+ dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
12
+ dict(type='RandomFlip', prob=0.5),
13
+ dict(type='PhotoMetricDistortion'),
14
+ dict(type='Normalize', **img_norm_cfg),
15
+ dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255),
16
+ dict(type='DefaultFormatBundle'),
17
+ dict(type='Collect', keys=['img', 'gt_semantic_seg']),
18
+ ]
19
+ test_pipeline = [
20
+ dict(type='LoadImageFromFile'),
21
+ dict(
22
+ type='MultiScaleFlipAug',
23
+ img_scale=(2048, 512),
24
+ # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75],
25
+ flip=False,
26
+ transforms=[
27
+ dict(type='Resize', keep_ratio=True),
28
+ dict(type='RandomFlip'),
29
+ dict(type='Normalize', **img_norm_cfg),
30
+ dict(type='ImageToTensor', keys=['img']),
31
+ dict(type='Collect', keys=['img']),
32
+ ])
33
+ ]
34
+ data = dict(
35
+ samples_per_gpu=4,
36
+ workers_per_gpu=4,
37
+ train=dict(
38
+ type=dataset_type,
39
+ data_root=data_root,
40
+ img_dir='JPEGImages',
41
+ ann_dir='SegmentationClass',
42
+ split='ImageSets/Segmentation/train.txt',
43
+ pipeline=train_pipeline),
44
+ val=dict(
45
+ type=dataset_type,
46
+ data_root=data_root,
47
+ img_dir='JPEGImages',
48
+ ann_dir='SegmentationClass',
49
+ split='ImageSets/Segmentation/val.txt',
50
+ pipeline=test_pipeline),
51
+ test=dict(
52
+ type=dataset_type,
53
+ data_root=data_root,
54
+ img_dir='JPEGImages',
55
+ ann_dir='SegmentationClass',
56
+ split='ImageSets/Segmentation/val.txt',
57
+ pipeline=test_pipeline))
FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/configs/_base_/datasets/pascal_voc12_aug.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ _base_ = './pascal_voc12.py'
2
+ # dataset settings
3
+ data = dict(
4
+ train=dict(
5
+ ann_dir=['SegmentationClass', 'SegmentationClassAug'],
6
+ split=[
7
+ 'ImageSets/Segmentation/train.txt',
8
+ 'ImageSets/Segmentation/aug.txt'
9
+ ]))
FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/configs/_base_/datasets/stare.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # dataset settings
2
+ dataset_type = 'STAREDataset'
3
+ data_root = 'data/STARE'
4
+ img_norm_cfg = dict(
5
+ mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
6
+ img_scale = (605, 700)
7
+ crop_size = (128, 128)
8
+ train_pipeline = [
9
+ dict(type='LoadImageFromFile'),
10
+ dict(type='LoadAnnotations'),
11
+ dict(type='Resize', img_scale=img_scale, ratio_range=(0.5, 2.0)),
12
+ dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
13
+ dict(type='RandomFlip', prob=0.5),
14
+ dict(type='PhotoMetricDistortion'),
15
+ dict(type='Normalize', **img_norm_cfg),
16
+ dict(type='Pad', size=crop_size, pad_val=0, seg_pad_val=255),
17
+ dict(type='DefaultFormatBundle'),
18
+ dict(type='Collect', keys=['img', 'gt_semantic_seg'])
19
+ ]
20
+ test_pipeline = [
21
+ dict(type='LoadImageFromFile'),
22
+ dict(
23
+ type='MultiScaleFlipAug',
24
+ img_scale=img_scale,
25
+ # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0],
26
+ flip=False,
27
+ transforms=[
28
+ dict(type='Resize', keep_ratio=True),
29
+ dict(type='RandomFlip'),
30
+ dict(type='Normalize', **img_norm_cfg),
31
+ dict(type='ImageToTensor', keys=['img']),
32
+ dict(type='Collect', keys=['img'])
33
+ ])
34
+ ]
35
+
36
+ data = dict(
37
+ samples_per_gpu=4,
38
+ workers_per_gpu=4,
39
+ train=dict(
40
+ type='RepeatDataset',
41
+ times=40000,
42
+ dataset=dict(
43
+ type=dataset_type,
44
+ data_root=data_root,
45
+ img_dir='images/training',
46
+ ann_dir='annotations/training',
47
+ pipeline=train_pipeline)),
48
+ val=dict(
49
+ type=dataset_type,
50
+ data_root=data_root,
51
+ img_dir='images/validation',
52
+ ann_dir='annotations/validation',
53
+ pipeline=test_pipeline),
54
+ test=dict(
55
+ type=dataset_type,
56
+ data_root=data_root,
57
+ img_dir='images/validation',
58
+ ann_dir='annotations/validation',
59
+ pipeline=test_pipeline))
FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/configs/_base_/default_runtime.py ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # yapf:disable
2
+ log_config = dict(
3
+ interval=50,
4
+ hooks=[
5
+ dict(type='TextLoggerHook', by_epoch=False),
6
+ # dict(type='TensorboardLoggerHook')
7
+ ])
8
+ # yapf:enable
9
+ dist_params = dict(backend='nccl')
10
+ log_level = 'INFO'
11
+ load_from = None
12
+ resume_from = None
13
+ workflow = [('train', 1)]
14
+ cudnn_benchmark = True
FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/configs/_base_/models/ann_r50-d8.py ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # model settings
2
+ norm_cfg = dict(type='SyncBN', requires_grad=True)
3
+ model = dict(
4
+ type='EncoderDecoder',
5
+ pretrained='open-mmlab://resnet50_v1c',
6
+ backbone=dict(
7
+ type='ResNetV1c',
8
+ depth=50,
9
+ num_stages=4,
10
+ out_indices=(0, 1, 2, 3),
11
+ dilations=(1, 1, 2, 4),
12
+ strides=(1, 2, 1, 1),
13
+ norm_cfg=norm_cfg,
14
+ norm_eval=False,
15
+ style='pytorch',
16
+ contract_dilation=True),
17
+ decode_head=dict(
18
+ type='ANNHead',
19
+ in_channels=[1024, 2048],
20
+ in_index=[2, 3],
21
+ channels=512,
22
+ project_channels=256,
23
+ query_scales=(1, ),
24
+ key_pool_scales=(1, 3, 6, 8),
25
+ dropout_ratio=0.1,
26
+ num_classes=19,
27
+ norm_cfg=norm_cfg,
28
+ align_corners=False,
29
+ loss_decode=dict(
30
+ type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
31
+ auxiliary_head=dict(
32
+ type='FCNHead',
33
+ in_channels=1024,
34
+ in_index=2,
35
+ channels=256,
36
+ num_convs=1,
37
+ concat_input=False,
38
+ dropout_ratio=0.1,
39
+ num_classes=19,
40
+ norm_cfg=norm_cfg,
41
+ align_corners=False,
42
+ loss_decode=dict(
43
+ type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
44
+ # model training and testing settings
45
+ train_cfg=dict(),
46
+ test_cfg=dict(mode='whole'))
FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/configs/_base_/models/apcnet_r50-d8.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # model settings
2
+ norm_cfg = dict(type='SyncBN', requires_grad=True)
3
+ model = dict(
4
+ type='EncoderDecoder',
5
+ pretrained='open-mmlab://resnet50_v1c',
6
+ backbone=dict(
7
+ type='ResNetV1c',
8
+ depth=50,
9
+ num_stages=4,
10
+ out_indices=(0, 1, 2, 3),
11
+ dilations=(1, 1, 2, 4),
12
+ strides=(1, 2, 1, 1),
13
+ norm_cfg=norm_cfg,
14
+ norm_eval=False,
15
+ style='pytorch',
16
+ contract_dilation=True),
17
+ decode_head=dict(
18
+ type='APCHead',
19
+ in_channels=2048,
20
+ in_index=3,
21
+ channels=512,
22
+ pool_scales=(1, 2, 3, 6),
23
+ dropout_ratio=0.1,
24
+ num_classes=19,
25
+ norm_cfg=dict(type='SyncBN', requires_grad=True),
26
+ align_corners=False,
27
+ loss_decode=dict(
28
+ type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
29
+ auxiliary_head=dict(
30
+ type='FCNHead',
31
+ in_channels=1024,
32
+ in_index=2,
33
+ channels=256,
34
+ num_convs=1,
35
+ concat_input=False,
36
+ dropout_ratio=0.1,
37
+ num_classes=19,
38
+ norm_cfg=norm_cfg,
39
+ align_corners=False,
40
+ loss_decode=dict(
41
+ type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
42
+ # model training and testing settings
43
+ train_cfg=dict(),
44
+ test_cfg=dict(mode='whole'))
FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/configs/_base_/models/ccnet_r50-d8.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # model settings
2
+ norm_cfg = dict(type='SyncBN', requires_grad=True)
3
+ model = dict(
4
+ type='EncoderDecoder',
5
+ pretrained='open-mmlab://resnet50_v1c',
6
+ backbone=dict(
7
+ type='ResNetV1c',
8
+ depth=50,
9
+ num_stages=4,
10
+ out_indices=(0, 1, 2, 3),
11
+ dilations=(1, 1, 2, 4),
12
+ strides=(1, 2, 1, 1),
13
+ norm_cfg=norm_cfg,
14
+ norm_eval=False,
15
+ style='pytorch',
16
+ contract_dilation=True),
17
+ decode_head=dict(
18
+ type='CCHead',
19
+ in_channels=2048,
20
+ in_index=3,
21
+ channels=512,
22
+ recurrence=2,
23
+ dropout_ratio=0.1,
24
+ num_classes=19,
25
+ norm_cfg=norm_cfg,
26
+ align_corners=False,
27
+ loss_decode=dict(
28
+ type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
29
+ auxiliary_head=dict(
30
+ type='FCNHead',
31
+ in_channels=1024,
32
+ in_index=2,
33
+ channels=256,
34
+ num_convs=1,
35
+ concat_input=False,
36
+ dropout_ratio=0.1,
37
+ num_classes=19,
38
+ norm_cfg=norm_cfg,
39
+ align_corners=False,
40
+ loss_decode=dict(
41
+ type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
42
+ # model training and testing settings
43
+ train_cfg=dict(),
44
+ test_cfg=dict(mode='whole'))
FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/configs/_base_/models/cgnet.py ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # model settings
2
+ norm_cfg = dict(type='SyncBN', eps=1e-03, requires_grad=True)
3
+ model = dict(
4
+ type='EncoderDecoder',
5
+ backbone=dict(
6
+ type='CGNet',
7
+ norm_cfg=norm_cfg,
8
+ in_channels=3,
9
+ num_channels=(32, 64, 128),
10
+ num_blocks=(3, 21),
11
+ dilations=(2, 4),
12
+ reductions=(8, 16)),
13
+ decode_head=dict(
14
+ type='FCNHead',
15
+ in_channels=256,
16
+ in_index=2,
17
+ channels=256,
18
+ num_convs=0,
19
+ concat_input=False,
20
+ dropout_ratio=0,
21
+ num_classes=19,
22
+ norm_cfg=norm_cfg,
23
+ loss_decode=dict(
24
+ type='CrossEntropyLoss',
25
+ use_sigmoid=False,
26
+ loss_weight=1.0,
27
+ class_weight=[
28
+ 2.5959933, 6.7415504, 3.5354059, 9.8663225, 9.690899, 9.369352,
29
+ 10.289121, 9.953208, 4.3097677, 9.490387, 7.674431, 9.396905,
30
+ 10.347791, 6.3927646, 10.226669, 10.241062, 10.280587,
31
+ 10.396974, 10.055647
32
+ ])),
33
+ # model training and testing settings
34
+ train_cfg=dict(sampler=None),
35
+ test_cfg=dict(mode='whole'))
FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/configs/_base_/models/danet_r50-d8.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # model settings
2
+ norm_cfg = dict(type='SyncBN', requires_grad=True)
3
+ model = dict(
4
+ type='EncoderDecoder',
5
+ pretrained='open-mmlab://resnet50_v1c',
6
+ backbone=dict(
7
+ type='ResNetV1c',
8
+ depth=50,
9
+ num_stages=4,
10
+ out_indices=(0, 1, 2, 3),
11
+ dilations=(1, 1, 2, 4),
12
+ strides=(1, 2, 1, 1),
13
+ norm_cfg=norm_cfg,
14
+ norm_eval=False,
15
+ style='pytorch',
16
+ contract_dilation=True),
17
+ decode_head=dict(
18
+ type='DAHead',
19
+ in_channels=2048,
20
+ in_index=3,
21
+ channels=512,
22
+ pam_channels=64,
23
+ dropout_ratio=0.1,
24
+ num_classes=19,
25
+ norm_cfg=norm_cfg,
26
+ align_corners=False,
27
+ loss_decode=dict(
28
+ type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
29
+ auxiliary_head=dict(
30
+ type='FCNHead',
31
+ in_channels=1024,
32
+ in_index=2,
33
+ channels=256,
34
+ num_convs=1,
35
+ concat_input=False,
36
+ dropout_ratio=0.1,
37
+ num_classes=19,
38
+ norm_cfg=norm_cfg,
39
+ align_corners=False,
40
+ loss_decode=dict(
41
+ type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
42
+ # model training and testing settings
43
+ train_cfg=dict(),
44
+ test_cfg=dict(mode='whole'))
FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/configs/_base_/models/deeplabv3_r50-d8.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # model settings
2
+ norm_cfg = dict(type='SyncBN', requires_grad=True)
3
+ model = dict(
4
+ type='EncoderDecoder',
5
+ pretrained='open-mmlab://resnet50_v1c',
6
+ backbone=dict(
7
+ type='ResNetV1c',
8
+ depth=50,
9
+ num_stages=4,
10
+ out_indices=(0, 1, 2, 3),
11
+ dilations=(1, 1, 2, 4),
12
+ strides=(1, 2, 1, 1),
13
+ norm_cfg=norm_cfg,
14
+ norm_eval=False,
15
+ style='pytorch',
16
+ contract_dilation=True),
17
+ decode_head=dict(
18
+ type='ASPPHead',
19
+ in_channels=2048,
20
+ in_index=3,
21
+ channels=512,
22
+ dilations=(1, 12, 24, 36),
23
+ dropout_ratio=0.1,
24
+ num_classes=19,
25
+ norm_cfg=norm_cfg,
26
+ align_corners=False,
27
+ loss_decode=dict(
28
+ type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
29
+ auxiliary_head=dict(
30
+ type='FCNHead',
31
+ in_channels=1024,
32
+ in_index=2,
33
+ channels=256,
34
+ num_convs=1,
35
+ concat_input=False,
36
+ dropout_ratio=0.1,
37
+ num_classes=19,
38
+ norm_cfg=norm_cfg,
39
+ align_corners=False,
40
+ loss_decode=dict(
41
+ type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
42
+ # model training and testing settings
43
+ train_cfg=dict(),
44
+ test_cfg=dict(mode='whole'))
FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/configs/_base_/models/deeplabv3_unet_s5-d16.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # model settings
2
+ norm_cfg = dict(type='SyncBN', requires_grad=True)
3
+ model = dict(
4
+ type='EncoderDecoder',
5
+ pretrained=None,
6
+ backbone=dict(
7
+ type='UNet',
8
+ in_channels=3,
9
+ base_channels=64,
10
+ num_stages=5,
11
+ strides=(1, 1, 1, 1, 1),
12
+ enc_num_convs=(2, 2, 2, 2, 2),
13
+ dec_num_convs=(2, 2, 2, 2),
14
+ downsamples=(True, True, True, True),
15
+ enc_dilations=(1, 1, 1, 1, 1),
16
+ dec_dilations=(1, 1, 1, 1),
17
+ with_cp=False,
18
+ conv_cfg=None,
19
+ norm_cfg=norm_cfg,
20
+ act_cfg=dict(type='ReLU'),
21
+ upsample_cfg=dict(type='InterpConv'),
22
+ norm_eval=False),
23
+ decode_head=dict(
24
+ type='ASPPHead',
25
+ in_channels=64,
26
+ in_index=4,
27
+ channels=16,
28
+ dilations=(1, 12, 24, 36),
29
+ dropout_ratio=0.1,
30
+ num_classes=2,
31
+ norm_cfg=norm_cfg,
32
+ align_corners=False,
33
+ loss_decode=dict(
34
+ type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
35
+ auxiliary_head=dict(
36
+ type='FCNHead',
37
+ in_channels=128,
38
+ in_index=3,
39
+ channels=64,
40
+ num_convs=1,
41
+ concat_input=False,
42
+ dropout_ratio=0.1,
43
+ num_classes=2,
44
+ norm_cfg=norm_cfg,
45
+ align_corners=False,
46
+ loss_decode=dict(
47
+ type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
48
+ # model training and testing settings
49
+ train_cfg=dict(),
50
+ test_cfg=dict(mode='slide', crop_size=256, stride=170))
FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/configs/_base_/models/deeplabv3plus_r50-d8.py ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # model settings
2
+ norm_cfg = dict(type='SyncBN', requires_grad=True)
3
+ model = dict(
4
+ type='EncoderDecoder',
5
+ pretrained='open-mmlab://resnet50_v1c',
6
+ backbone=dict(
7
+ type='ResNetV1c',
8
+ depth=50,
9
+ num_stages=4,
10
+ out_indices=(0, 1, 2, 3),
11
+ dilations=(1, 1, 2, 4),
12
+ strides=(1, 2, 1, 1),
13
+ norm_cfg=norm_cfg,
14
+ norm_eval=False,
15
+ style='pytorch',
16
+ contract_dilation=True),
17
+ decode_head=dict(
18
+ type='DepthwiseSeparableASPPHead',
19
+ in_channels=2048,
20
+ in_index=3,
21
+ channels=512,
22
+ dilations=(1, 12, 24, 36),
23
+ c1_in_channels=256,
24
+ c1_channels=48,
25
+ dropout_ratio=0.1,
26
+ num_classes=19,
27
+ norm_cfg=norm_cfg,
28
+ align_corners=False,
29
+ loss_decode=dict(
30
+ type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
31
+ auxiliary_head=dict(
32
+ type='FCNHead',
33
+ in_channels=1024,
34
+ in_index=2,
35
+ channels=256,
36
+ num_convs=1,
37
+ concat_input=False,
38
+ dropout_ratio=0.1,
39
+ num_classes=19,
40
+ norm_cfg=norm_cfg,
41
+ align_corners=False,
42
+ loss_decode=dict(
43
+ type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
44
+ # model training and testing settings
45
+ train_cfg=dict(),
46
+ test_cfg=dict(mode='whole'))
FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/configs/_base_/models/dmnet_r50-d8.py ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # model settings
2
+ norm_cfg = dict(type='SyncBN', requires_grad=True)
3
+ model = dict(
4
+ type='EncoderDecoder',
5
+ pretrained='open-mmlab://resnet50_v1c',
6
+ backbone=dict(
7
+ type='ResNetV1c',
8
+ depth=50,
9
+ num_stages=4,
10
+ out_indices=(0, 1, 2, 3),
11
+ dilations=(1, 1, 2, 4),
12
+ strides=(1, 2, 1, 1),
13
+ norm_cfg=norm_cfg,
14
+ norm_eval=False,
15
+ style='pytorch',
16
+ contract_dilation=True),
17
+ decode_head=dict(
18
+ type='DMHead',
19
+ in_channels=2048,
20
+ in_index=3,
21
+ channels=512,
22
+ filter_sizes=(1, 3, 5, 7),
23
+ dropout_ratio=0.1,
24
+ num_classes=19,
25
+ norm_cfg=dict(type='SyncBN', requires_grad=True),
26
+ align_corners=False,
27
+ loss_decode=dict(
28
+ type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
29
+ auxiliary_head=dict(
30
+ type='FCNHead',
31
+ in_channels=1024,
32
+ in_index=2,
33
+ channels=256,
34
+ num_convs=1,
35
+ concat_input=False,
36
+ dropout_ratio=0.1,
37
+ num_classes=19,
38
+ norm_cfg=norm_cfg,
39
+ align_corners=False,
40
+ loss_decode=dict(
41
+ type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
42
+ # model training and testing settings
43
+ train_cfg=dict(),
44
+ test_cfg=dict(mode='whole'))
FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/configs/_base_/models/dnl_r50-d8.py ADDED
@@ -0,0 +1,46 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # model settings
2
+ norm_cfg = dict(type='SyncBN', requires_grad=True)
3
+ model = dict(
4
+ type='EncoderDecoder',
5
+ pretrained='open-mmlab://resnet50_v1c',
6
+ backbone=dict(
7
+ type='ResNetV1c',
8
+ depth=50,
9
+ num_stages=4,
10
+ out_indices=(0, 1, 2, 3),
11
+ dilations=(1, 1, 2, 4),
12
+ strides=(1, 2, 1, 1),
13
+ norm_cfg=norm_cfg,
14
+ norm_eval=False,
15
+ style='pytorch',
16
+ contract_dilation=True),
17
+ decode_head=dict(
18
+ type='DNLHead',
19
+ in_channels=2048,
20
+ in_index=3,
21
+ channels=512,
22
+ dropout_ratio=0.1,
23
+ reduction=2,
24
+ use_scale=True,
25
+ mode='embedded_gaussian',
26
+ num_classes=19,
27
+ norm_cfg=norm_cfg,
28
+ align_corners=False,
29
+ loss_decode=dict(
30
+ type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
31
+ auxiliary_head=dict(
32
+ type='FCNHead',
33
+ in_channels=1024,
34
+ in_index=2,
35
+ channels=256,
36
+ num_convs=1,
37
+ concat_input=False,
38
+ dropout_ratio=0.1,
39
+ num_classes=19,
40
+ norm_cfg=norm_cfg,
41
+ align_corners=False,
42
+ loss_decode=dict(
43
+ type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
44
+ # model training and testing settings
45
+ train_cfg=dict(),
46
+ test_cfg=dict(mode='whole'))
FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/configs/_base_/models/emanet_r50-d8.py ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # model settings
2
+ norm_cfg = dict(type='SyncBN', requires_grad=True)
3
+ model = dict(
4
+ type='EncoderDecoder',
5
+ pretrained='open-mmlab://resnet50_v1c',
6
+ backbone=dict(
7
+ type='ResNetV1c',
8
+ depth=50,
9
+ num_stages=4,
10
+ out_indices=(0, 1, 2, 3),
11
+ dilations=(1, 1, 2, 4),
12
+ strides=(1, 2, 1, 1),
13
+ norm_cfg=norm_cfg,
14
+ norm_eval=False,
15
+ style='pytorch',
16
+ contract_dilation=True),
17
+ decode_head=dict(
18
+ type='EMAHead',
19
+ in_channels=2048,
20
+ in_index=3,
21
+ channels=256,
22
+ ema_channels=512,
23
+ num_bases=64,
24
+ num_stages=3,
25
+ momentum=0.1,
26
+ dropout_ratio=0.1,
27
+ num_classes=19,
28
+ norm_cfg=norm_cfg,
29
+ align_corners=False,
30
+ loss_decode=dict(
31
+ type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
32
+ auxiliary_head=dict(
33
+ type='FCNHead',
34
+ in_channels=1024,
35
+ in_index=2,
36
+ channels=256,
37
+ num_convs=1,
38
+ concat_input=False,
39
+ dropout_ratio=0.1,
40
+ num_classes=19,
41
+ norm_cfg=norm_cfg,
42
+ align_corners=False,
43
+ loss_decode=dict(
44
+ type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
45
+ # model training and testing settings
46
+ train_cfg=dict(),
47
+ test_cfg=dict(mode='whole'))
FoodSeg103/Swin-Transformer-Semantic-Segmentation-main/configs/_base_/models/encnet_r50-d8.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # model settings
2
+ norm_cfg = dict(type='SyncBN', requires_grad=True)
3
+ model = dict(
4
+ type='EncoderDecoder',
5
+ pretrained='open-mmlab://resnet50_v1c',
6
+ backbone=dict(
7
+ type='ResNetV1c',
8
+ depth=50,
9
+ num_stages=4,
10
+ out_indices=(0, 1, 2, 3),
11
+ dilations=(1, 1, 2, 4),
12
+ strides=(1, 2, 1, 1),
13
+ norm_cfg=norm_cfg,
14
+ norm_eval=False,
15
+ style='pytorch',
16
+ contract_dilation=True),
17
+ decode_head=dict(
18
+ type='EncHead',
19
+ in_channels=[512, 1024, 2048],
20
+ in_index=(1, 2, 3),
21
+ channels=512,
22
+ num_codes=32,
23
+ use_se_loss=True,
24
+ add_lateral=False,
25
+ dropout_ratio=0.1,
26
+ num_classes=19,
27
+ norm_cfg=norm_cfg,
28
+ align_corners=False,
29
+ loss_decode=dict(
30
+ type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
31
+ loss_se_decode=dict(
32
+ type='CrossEntropyLoss', use_sigmoid=True, loss_weight=0.2)),
33
+ auxiliary_head=dict(
34
+ type='FCNHead',
35
+ in_channels=1024,
36
+ in_index=2,
37
+ channels=256,
38
+ num_convs=1,
39
+ concat_input=False,
40
+ dropout_ratio=0.1,
41
+ num_classes=19,
42
+ norm_cfg=norm_cfg,
43
+ align_corners=False,
44
+ loss_decode=dict(
45
+ type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
46
+ # model training and testing settings
47
+ train_cfg=dict(),
48
+ test_cfg=dict(mode='whole'))