import argparse import time import torch from mmcv import Config from mmcv.parallel import MMDataParallel from mmcv.runner import load_checkpoint from mmseg.datasets import build_dataloader, build_dataset from mmseg.models import build_segmentor def parse_args(): parser = argparse.ArgumentParser(description='MMSeg benchmark a model') parser.add_argument('config', help='test config file path') parser.add_argument('checkpoint', help='checkpoint file') parser.add_argument( '--log-interval', type=int, default=50, help='interval of logging') args = parser.parse_args() return args def main(): args = parse_args() cfg = Config.fromfile(args.config) # set cudnn_benchmark torch.backends.cudnn.benchmark = False cfg.model.pretrained = None cfg.data.test.test_mode = True # build the dataloader # TODO: support multiple images per gpu (only minor changes are needed) dataset = build_dataset(cfg.data.test) data_loader = build_dataloader( dataset, samples_per_gpu=1, workers_per_gpu=cfg.data.workers_per_gpu, dist=False, shuffle=False) # build the model and load checkpoint cfg.model.train_cfg = None model = build_segmentor(cfg.model, test_cfg=cfg.get('test_cfg')) load_checkpoint(model, args.checkpoint, map_location='cpu') model = MMDataParallel(model, device_ids=[0]) model.eval() # the first several iterations may be very slow so skip them num_warmup = 5 pure_inf_time = 0 total_iters = 200 # benchmark with 200 image and take the average for i, data in enumerate(data_loader): torch.cuda.synchronize() start_time = time.perf_counter() with torch.no_grad(): model(return_loss=False, rescale=True, **data) torch.cuda.synchronize() elapsed = time.perf_counter() - start_time if i >= num_warmup: pure_inf_time += elapsed if (i + 1) % args.log_interval == 0: fps = (i + 1 - num_warmup) / pure_inf_time print(f'Done image [{i + 1:<3}/ {total_iters}], ' f'fps: {fps:.2f} img / s') if (i + 1) == total_iters: fps = (i + 1 - num_warmup) / pure_inf_time print(f'Overall fps: {fps:.2f} img / s') break if __name__ == '__main__': main()