KingNish commited on
Commit
7ac8058
·
verified ·
1 Parent(s): 75a300f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -2
app.py CHANGED
@@ -49,6 +49,11 @@ pipe_edit = StableDiffusionXLInstructPix2PixPipeline.from_single_file( edit_file
49
  pipe_edit.scheduler = EDMEulerScheduler(sigma_min=0.002, sigma_max=120.0, sigma_data=1.0, prediction_type="v_prediction")
50
  pipe_edit.to("cuda")
51
 
 
 
 
 
 
52
  # Generator
53
  @spaces.GPU(duration=30, queue=False)
54
  def king(type ,
@@ -66,6 +71,11 @@ def king(type ,
66
  progress=gr.Progress(track_tqdm=True),
67
  ):
68
  if type=="Image Editing" :
 
 
 
 
 
69
  if randomize_seed:
70
  seed = random.randint(0, 99999)
71
  text_cfg_scale = text_cfg_scale
@@ -74,13 +84,13 @@ def king(type ,
74
  steps=steps
75
  generator = torch.manual_seed(seed)
76
  output_image = pipe_edit(
77
- instruction, image=input_image,
78
  guidance_scale=text_cfg_scale, image_guidance_scale=image_cfg_scale,
79
  num_inference_steps=steps, generator=generator, output_type="latent",
80
  ).images
81
 
82
  refine = refiner(
83
- prompt=instruction,
84
  guidance_scale=guidance_scale,
85
  num_inference_steps=steps,
86
  image=output_image,
 
49
  pipe_edit.scheduler = EDMEulerScheduler(sigma_min=0.002, sigma_max=120.0, sigma_data=1.0, prediction_type="v_prediction")
50
  pipe_edit.to("cuda")
51
 
52
+ from transformers import BlipProcessor, BlipForConditionalGeneration
53
+
54
+ processor = BlipProcessor.from_pretrained("unography/blip-long-cap")
55
+ model = BlipForConditionalGeneration.from_pretrained("unography/blip-long-cap", torch_dtype=torch.float16).to("cuda")
56
+
57
  # Generator
58
  @spaces.GPU(duration=30, queue=False)
59
  def king(type ,
 
71
  progress=gr.Progress(track_tqdm=True),
72
  ):
73
  if type=="Image Editing" :
74
+ raw_image = Image.open(input_image).convert('RGB')
75
+ inputs = processor(raw_image, return_tensors="pt").to("cuda", torch.float16)
76
+ out = model.generate(**inputs, min_length=10, max_length=25)
77
+ caption = processor.decode(out[0], skip_special_tokens=True)
78
+ instructions = f"{instruction} {caption} {instruction}"
79
  if randomize_seed:
80
  seed = random.randint(0, 99999)
81
  text_cfg_scale = text_cfg_scale
 
84
  steps=steps
85
  generator = torch.manual_seed(seed)
86
  output_image = pipe_edit(
87
+ instructions, image=input_image,
88
  guidance_scale=text_cfg_scale, image_guidance_scale=image_cfg_scale,
89
  num_inference_steps=steps, generator=generator, output_type="latent",
90
  ).images
91
 
92
  refine = refiner(
93
+ prompt=instruction2,
94
  guidance_scale=guidance_scale,
95
  num_inference_steps=steps,
96
  image=output_image,