Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -18,20 +18,17 @@ vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype
|
|
18 |
repo = "fluently/Fluently-XL-Final"
|
19 |
|
20 |
pipe_best = StableDiffusionXLPipeline.from_pretrained(repo, torch_dtype=torch.float16, vae=vae)
|
21 |
-
pipe_best.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe_best.scheduler.config)
|
22 |
pipe_best.load_lora_weights("ehristoforu/dalle-3-xl-v2", weight_name="dalle-3-xl-lora-v2.safetensors", adapter_name="dalle")
|
23 |
pipe_best.load_lora_weights("KingNish/Better-Image-XL-Lora", weight_name="example-03.safetensors", adapter_name="lora")
|
24 |
pipe_best.set_adapters(["lora","dalle"], adapter_weights=[1.5, 0.7])
|
25 |
pipe_best.to("cuda")
|
26 |
|
27 |
pipe_3D = StableDiffusionXLPipeline.from_pretrained(repo, torch_dtype=torch.float16, vae=vae)
|
28 |
-
pipe_3D.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe_3D.scheduler.config)
|
29 |
pipe_3D.load_lora_weights("artificialguybr/3DRedmond-V1", weight_name="3DRedmond-3DRenderStyle-3DRenderAF.safetensors", adapter_name="3D")
|
30 |
pipe_3D.set_adapters(["3D"])
|
31 |
pipe_3D.to("cuda")
|
32 |
|
33 |
pipe_logo = StableDiffusionXLPipeline.from_pretrained(repo, torch_dtype=torch.float16, vae=vae)
|
34 |
-
pipe_logo.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe_logo.scheduler.config)
|
35 |
pipe_logo.load_lora_weights("artificialguybr/LogoRedmond-LogoLoraForSDXL", weight_name="LogoRedmond_LogoRedAF.safetensors", adapter_name="logo")
|
36 |
pipe_logo.set_adapters(["logo"])
|
37 |
pipe_logo.to("cuda")
|
@@ -104,12 +101,12 @@ def king(type ,
|
|
104 |
generator = torch.Generator().manual_seed(seed)
|
105 |
if style=="3D":
|
106 |
instruction = f"3DRenderAF, 3D Render, {instruction}"
|
107 |
-
image = pipe_3D( prompt = instruction, guidance_scale =
|
108 |
elif style=="Logo":
|
109 |
instruction = f"LogoRedAF, {instruction}"
|
110 |
-
image = pipe_logo( prompt = instruction, guidance_scale =
|
111 |
else:
|
112 |
-
image = pipe_best( prompt = instruction, guidance_scale =
|
113 |
return seed, image
|
114 |
|
115 |
client = InferenceClient()
|
|
|
18 |
repo = "fluently/Fluently-XL-Final"
|
19 |
|
20 |
pipe_best = StableDiffusionXLPipeline.from_pretrained(repo, torch_dtype=torch.float16, vae=vae)
|
|
|
21 |
pipe_best.load_lora_weights("ehristoforu/dalle-3-xl-v2", weight_name="dalle-3-xl-lora-v2.safetensors", adapter_name="dalle")
|
22 |
pipe_best.load_lora_weights("KingNish/Better-Image-XL-Lora", weight_name="example-03.safetensors", adapter_name="lora")
|
23 |
pipe_best.set_adapters(["lora","dalle"], adapter_weights=[1.5, 0.7])
|
24 |
pipe_best.to("cuda")
|
25 |
|
26 |
pipe_3D = StableDiffusionXLPipeline.from_pretrained(repo, torch_dtype=torch.float16, vae=vae)
|
|
|
27 |
pipe_3D.load_lora_weights("artificialguybr/3DRedmond-V1", weight_name="3DRedmond-3DRenderStyle-3DRenderAF.safetensors", adapter_name="3D")
|
28 |
pipe_3D.set_adapters(["3D"])
|
29 |
pipe_3D.to("cuda")
|
30 |
|
31 |
pipe_logo = StableDiffusionXLPipeline.from_pretrained(repo, torch_dtype=torch.float16, vae=vae)
|
|
|
32 |
pipe_logo.load_lora_weights("artificialguybr/LogoRedmond-LogoLoraForSDXL", weight_name="LogoRedmond_LogoRedAF.safetensors", adapter_name="logo")
|
33 |
pipe_logo.set_adapters(["logo"])
|
34 |
pipe_logo.to("cuda")
|
|
|
101 |
generator = torch.Generator().manual_seed(seed)
|
102 |
if style=="3D":
|
103 |
instruction = f"3DRenderAF, 3D Render, {instruction}"
|
104 |
+
image = pipe_3D( prompt = instruction, guidance_scale = 5, num_inference_steps = steps, width = width, height = height, generator = generator).images[0]
|
105 |
elif style=="Logo":
|
106 |
instruction = f"LogoRedAF, {instruction}"
|
107 |
+
image = pipe_logo( prompt = instruction, guidance_scale = 5, num_inference_steps = steps, width = width, height = height, generator = generator).images[0]
|
108 |
else:
|
109 |
+
image = pipe_best( prompt = instruction, guidance_scale = 5, num_inference_steps = steps, width = width, height = height, generator = generator).images[0]
|
110 |
return seed, image
|
111 |
|
112 |
client = InferenceClient()
|