Spaces:
Sleeping
Sleeping
Update model.py
Browse files
model.py
CHANGED
@@ -157,7 +157,7 @@ def playlist_model(url, model, max_gen=3, same_art=5):
|
|
157 |
log.append('Model run successfully')
|
158 |
return Fresult, log
|
159 |
|
160 |
-
lendf=len(pd.read_csv('
|
161 |
dtypes = {'track_uri': 'object', 'artist_uri': 'object', 'album_uri': 'object', 'danceability': 'float16', 'energy': 'float16', 'key': 'float16',
|
162 |
'loudness': 'float16', 'mode': 'float16', 'speechiness': 'float16', 'acousticness': 'float16', 'instrumentalness': 'float16',
|
163 |
'liveness': 'float16', 'valence': 'float16', 'tempo': 'float16', 'duration_ms': 'float32', 'time_signature': 'float16',
|
@@ -292,7 +292,7 @@ def playlist_model(url, model, max_gen=3, same_art=5):
|
|
292 |
x = 1
|
293 |
for i in range(int(lendf/2), lendf+1, int(lendf/2)):
|
294 |
try:
|
295 |
-
df = pd.read_csv('
|
296 |
log.append('reading data frame chunks from {} to {}'.format(x,i))
|
297 |
except Exception as e:
|
298 |
log.append('Failed to load grow')
|
@@ -315,7 +315,7 @@ def playlist_model(url, model, max_gen=3, same_art=5):
|
|
315 |
log.append('genre|unknown not found')
|
316 |
log.append('Scaling the data .....')
|
317 |
if x == 1:
|
318 |
-
sc = pickle.load(open('
|
319 |
df.iloc[:, 3:19] = sc.transform(df.iloc[:, 3:19])
|
320 |
test.iloc[:, 3:19] = sc.transform(test.iloc[:, 3:19])
|
321 |
log.append("Creating playlist vector")
|
@@ -359,13 +359,13 @@ def playlist_model(url, model, max_gen=3, same_art=5):
|
|
359 |
log.append('{} New Tracks Found'.format(len(grow)))
|
360 |
if(len(grow)>=1):
|
361 |
try:
|
362 |
-
new=pd.read_csv('
|
363 |
new=pd.concat([new, grow], axis=0)
|
364 |
new=new[new.Track_pop >0]
|
365 |
new.drop_duplicates(subset=['track_uri'], inplace=True,keep='last')
|
366 |
-
new.to_csv('
|
367 |
except:
|
368 |
-
grow.to_csv('
|
369 |
log.append('Model run successfully')
|
370 |
except Exception as e:
|
371 |
log.append("Model Failed")
|
@@ -437,7 +437,7 @@ def song_model(url, model, max_gen=3, same_art=5):
|
|
437 |
Fresult.append(aa['tracks'][i]['id'])
|
438 |
log.append('Model run successfully')
|
439 |
return Fresult, log
|
440 |
-
lendf=len(pd.read_csv('
|
441 |
dtypes = {'track_uri': 'object', 'artist_uri': 'object', 'album_uri': 'object', 'danceability': 'float16', 'energy': 'float16', 'key': 'float16',
|
442 |
'loudness': 'float16', 'mode': 'float16', 'speechiness': 'float16', 'acousticness': 'float16', 'instrumentalness': 'float16',
|
443 |
'liveness': 'float16', 'valence': 'float16', 'tempo': 'float16', 'duration_ms': 'float32', 'time_signature': 'float16',
|
@@ -504,7 +504,7 @@ def song_model(url, model, max_gen=3, same_art=5):
|
|
504 |
x = 1
|
505 |
for i in range(int(lendf/2), lendf+1, int(lendf/2)):
|
506 |
try:
|
507 |
-
df = pd.read_csv('
|
508 |
log.append('reading data frame chunks from {} to {}'.format(x,i))
|
509 |
except Exception as e:
|
510 |
log.append('Failed to load grow')
|
@@ -527,7 +527,7 @@ def song_model(url, model, max_gen=3, same_art=5):
|
|
527 |
log.append('genre|unknown not found')
|
528 |
log.append('Scaling the data .....')
|
529 |
if x == 1:
|
530 |
-
sc = pickle.load(open('
|
531 |
df.iloc[:, 3:19] = sc.transform(df.iloc[:, 3:19])
|
532 |
test.iloc[:, 3:19] = sc.transform(test.iloc[:, 3:19])
|
533 |
log.append("Creating playlist vector")
|
@@ -571,13 +571,13 @@ def song_model(url, model, max_gen=3, same_art=5):
|
|
571 |
log.append('{} New Tracks Found'.format(len(grow)))
|
572 |
if(len(grow)>=1):
|
573 |
try:
|
574 |
-
new=pd.read_csv('
|
575 |
new=pd.concat([new, grow], axis=0)
|
576 |
new=new[new.Track_pop >0]
|
577 |
new.drop_duplicates(subset=['track_uri'], inplace=True,keep='last')
|
578 |
-
new.to_csv('
|
579 |
except:
|
580 |
-
grow.to_csv('
|
581 |
log.append('Model run successfully')
|
582 |
except Exception as e:
|
583 |
log.append("Model Failed")
|
@@ -593,14 +593,14 @@ def update_dataset():
|
|
593 |
'loudness': 'float16', 'mode': 'float16', 'speechiness': 'float16', 'acousticness': 'float16', 'instrumentalness': 'float16',
|
594 |
'liveness': 'float16', 'valence': 'float16', 'tempo': 'float16', 'duration_ms': 'float32', 'time_signature': 'float16',
|
595 |
'Track_release_date': 'int8', 'Track_pop': 'int8', 'Artist_pop': 'int8', 'Artist_genres': 'object'}
|
596 |
-
df = pd.read_csv('
|
597 |
-
grow = pd.read_csv('
|
598 |
cur = len(df)
|
599 |
df=pd.concat([df,grow],axis=0)
|
600 |
grow=pd.DataFrame(columns=col_name)
|
601 |
-
grow.to_csv('
|
602 |
df=df[df.Track_pop >0]
|
603 |
df.drop_duplicates(subset=['track_uri'],inplace=True,keep='last')
|
604 |
df.dropna(axis=0,inplace=True)
|
605 |
-
df.to_csv('
|
606 |
return (len(df)-cur)
|
|
|
157 |
log.append('Model run successfully')
|
158 |
return Fresult, log
|
159 |
|
160 |
+
lendf=len(pd.read_csv('data/streamlit.csv',usecols=['track_uri']))
|
161 |
dtypes = {'track_uri': 'object', 'artist_uri': 'object', 'album_uri': 'object', 'danceability': 'float16', 'energy': 'float16', 'key': 'float16',
|
162 |
'loudness': 'float16', 'mode': 'float16', 'speechiness': 'float16', 'acousticness': 'float16', 'instrumentalness': 'float16',
|
163 |
'liveness': 'float16', 'valence': 'float16', 'tempo': 'float16', 'duration_ms': 'float32', 'time_signature': 'float16',
|
|
|
292 |
x = 1
|
293 |
for i in range(int(lendf/2), lendf+1, int(lendf/2)):
|
294 |
try:
|
295 |
+
df = pd.read_csv('data/streamlit.csv',names= col_name,dtype=dtypes,skiprows=x,nrows=i)
|
296 |
log.append('reading data frame chunks from {} to {}'.format(x,i))
|
297 |
except Exception as e:
|
298 |
log.append('Failed to load grow')
|
|
|
315 |
log.append('genre|unknown not found')
|
316 |
log.append('Scaling the data .....')
|
317 |
if x == 1:
|
318 |
+
sc = pickle.load(open('data/sc.sav','rb'))
|
319 |
df.iloc[:, 3:19] = sc.transform(df.iloc[:, 3:19])
|
320 |
test.iloc[:, 3:19] = sc.transform(test.iloc[:, 3:19])
|
321 |
log.append("Creating playlist vector")
|
|
|
359 |
log.append('{} New Tracks Found'.format(len(grow)))
|
360 |
if(len(grow)>=1):
|
361 |
try:
|
362 |
+
new=pd.read_csv('data/new_tracks.csv',dtype=dtypes)
|
363 |
new=pd.concat([new, grow], axis=0)
|
364 |
new=new[new.Track_pop >0]
|
365 |
new.drop_duplicates(subset=['track_uri'], inplace=True,keep='last')
|
366 |
+
new.to_csv('data/new_tracks.csv',index=False)
|
367 |
except:
|
368 |
+
grow.to_csv('data/new_tracks.csv', index=False)
|
369 |
log.append('Model run successfully')
|
370 |
except Exception as e:
|
371 |
log.append("Model Failed")
|
|
|
437 |
Fresult.append(aa['tracks'][i]['id'])
|
438 |
log.append('Model run successfully')
|
439 |
return Fresult, log
|
440 |
+
lendf=len(pd.read_csv('data/streamlit.csv',usecols=['track_uri']))
|
441 |
dtypes = {'track_uri': 'object', 'artist_uri': 'object', 'album_uri': 'object', 'danceability': 'float16', 'energy': 'float16', 'key': 'float16',
|
442 |
'loudness': 'float16', 'mode': 'float16', 'speechiness': 'float16', 'acousticness': 'float16', 'instrumentalness': 'float16',
|
443 |
'liveness': 'float16', 'valence': 'float16', 'tempo': 'float16', 'duration_ms': 'float32', 'time_signature': 'float16',
|
|
|
504 |
x = 1
|
505 |
for i in range(int(lendf/2), lendf+1, int(lendf/2)):
|
506 |
try:
|
507 |
+
df = pd.read_csv('data/streamlit.csv',names= col_name,dtype=dtypes,skiprows=x,nrows=i)
|
508 |
log.append('reading data frame chunks from {} to {}'.format(x,i))
|
509 |
except Exception as e:
|
510 |
log.append('Failed to load grow')
|
|
|
527 |
log.append('genre|unknown not found')
|
528 |
log.append('Scaling the data .....')
|
529 |
if x == 1:
|
530 |
+
sc = pickle.load(open('data/sc.sav','rb'))
|
531 |
df.iloc[:, 3:19] = sc.transform(df.iloc[:, 3:19])
|
532 |
test.iloc[:, 3:19] = sc.transform(test.iloc[:, 3:19])
|
533 |
log.append("Creating playlist vector")
|
|
|
571 |
log.append('{} New Tracks Found'.format(len(grow)))
|
572 |
if(len(grow)>=1):
|
573 |
try:
|
574 |
+
new=pd.read_csv('data/new_tracks.csv',dtype=dtypes)
|
575 |
new=pd.concat([new, grow], axis=0)
|
576 |
new=new[new.Track_pop >0]
|
577 |
new.drop_duplicates(subset=['track_uri'], inplace=True,keep='last')
|
578 |
+
new.to_csv('data/new_tracks.csv',index=False)
|
579 |
except:
|
580 |
+
grow.to_csv('data/new_tracks.csv', index=False)
|
581 |
log.append('Model run successfully')
|
582 |
except Exception as e:
|
583 |
log.append("Model Failed")
|
|
|
593 |
'loudness': 'float16', 'mode': 'float16', 'speechiness': 'float16', 'acousticness': 'float16', 'instrumentalness': 'float16',
|
594 |
'liveness': 'float16', 'valence': 'float16', 'tempo': 'float16', 'duration_ms': 'float32', 'time_signature': 'float16',
|
595 |
'Track_release_date': 'int8', 'Track_pop': 'int8', 'Artist_pop': 'int8', 'Artist_genres': 'object'}
|
596 |
+
df = pd.read_csv('data/streamlit.csv',dtype=dtypes)
|
597 |
+
grow = pd.read_csv('data/new_tracks.csv',dtype=dtypes)
|
598 |
cur = len(df)
|
599 |
df=pd.concat([df,grow],axis=0)
|
600 |
grow=pd.DataFrame(columns=col_name)
|
601 |
+
grow.to_csv('data/new_tracks.csv',index=False)
|
602 |
df=df[df.Track_pop >0]
|
603 |
df.drop_duplicates(subset=['track_uri'],inplace=True,keep='last')
|
604 |
df.dropna(axis=0,inplace=True)
|
605 |
+
df.to_csv('data/streamlit.csv',index=False)
|
606 |
return (len(df)-cur)
|