æLtorio commited on
Commit
4784163
1 Parent(s): 7c2ecba
Files changed (1) hide show
  1. app.py +6 -4
app.py CHANGED
@@ -2,15 +2,16 @@ import gradio as gr
2
  from transformers import AutoProcessor, Idefics3ForConditionalGeneration, image_utils
3
  import torch
4
  device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
 
5
  model_id="eltorio/IDEFICS3_ROCO"
6
  # model = AutoModelForImageTextToText.from_pretrained(model_id).to(device)
7
  base_model_path="HuggingFaceM4/Idefics3-8B-Llama3" #or change to local path
8
- processor = AutoProcessor.from_pretrained(base_model_path)
9
  model = Idefics3ForConditionalGeneration.from_pretrained(
10
  base_model_path, torch_dtype=torch.bfloat16
11
  ).to(device)
12
 
13
- model.load_adapter(model_id)
14
 
15
  def infere(image):
16
  messages = [
@@ -24,10 +25,11 @@ def infere(image):
24
  ]
25
  prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
26
  inputs = processor(text=prompt, images=[image], return_tensors="pt")
 
27
  inputs = {k: v.to(device) for k, v in inputs.items()}
28
  generated_ids = model.generate(**inputs, max_new_tokens=8192)
29
  generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True)
30
  return generated_texts
31
 
32
- demo = gr.Interface(fn=infere, inputs="image", outputs="text")
33
- demo.launch()
 
2
  from transformers import AutoProcessor, Idefics3ForConditionalGeneration, image_utils
3
  import torch
4
  device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
5
+ print(f"Using device: {device}")
6
  model_id="eltorio/IDEFICS3_ROCO"
7
  # model = AutoModelForImageTextToText.from_pretrained(model_id).to(device)
8
  base_model_path="HuggingFaceM4/Idefics3-8B-Llama3" #or change to local path
9
+ processor = AutoProcessor.from_pretrained(base_model_path, trust_remote_code=True)
10
  model = Idefics3ForConditionalGeneration.from_pretrained(
11
  base_model_path, torch_dtype=torch.bfloat16
12
  ).to(device)
13
 
14
+ model.load_adapter(model_id,device_map="auto")
15
 
16
  def infere(image):
17
  messages = [
 
25
  ]
26
  prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
27
  inputs = processor(text=prompt, images=[image], return_tensors="pt")
28
+ print(f"inputs: {inputs}")
29
  inputs = {k: v.to(device) for k, v in inputs.items()}
30
  generated_ids = model.generate(**inputs, max_new_tokens=8192)
31
  generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True)
32
  return generated_texts
33
 
34
+ radiotest = gr.Interface(fn=infere, inputs="image", outputs="text")
35
+ radiotest.launch()