mcuri commited on
Commit
b5eaad3
·
1 Parent(s): 509c67b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +25 -19
app.py CHANGED
@@ -1,20 +1,26 @@
1
  import streamlit as st
2
- from transformers import pipeline
3
- from PIL import Image
4
-
5
- pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
6
-
7
- st.title("Hot Dog? Or Not?")
8
-
9
- file_name = st.file_uploader("Upload a hot dog candidate image")
10
-
11
- if file_name is not None:
12
- col1, col2 = st.columns(2)
13
-
14
- image = Image.open(file_name)
15
- col1.image(image, use_column_width=True)
16
- predictions = pipeline(image)
17
-
18
- col2.header("Probabilities")
19
- for p in predictions:
20
- col2.subheader(f"{ p['label'] }: { round(p['score'] * 100, 1)}%")
 
 
 
 
 
 
 
1
  import streamlit as st
2
+ import pandas as pd
3
+ import pickle
4
+ # Load Model
5
+ model = pickle.load(open('logreg_model.pkl', 'rb'))
6
+ st.title('Iris Variety Prediction')
7
+ # Form
8
+ with st.form(key='form_parameters'):
9
+ sepal_length = st.slider('Sepal Length', 4.0, 8.0, 4.0)
10
+ sepal_width = st.slider('Sepal Width', 2.0, 4.5, 2.0)
11
+ petal_length = st.slider('Petal Length', 1.0, 7.0, 1.0)
12
+ petal_width = st.slider('Petal Width', 0.1, 2.5, 0.1)
13
+ st.markdown('---')
14
+ submitted = st.form_submit_button('Predict')
15
+ # Data Inference
16
+ data_inf = {
17
+ 'sepal.length': sepal_length,
18
+ 'sepal.width': sepal_width,
19
+ 'petal.length': petal_length,
20
+ 'petal.width': petal_width
21
+ }
22
+ data_inf = pd.DataFrame([data_inf])
23
+ if submitted:
24
+ # Predict using Logistic Regression
25
+ y_pred_inf = model.predict(data_inf)
26
+ st.write('## Iris Variety = '+ str(y_pred_inf))