mcysqrd's picture
Duplicate from muellerzr/deployment-no-fastai
f49db3f
import torch
import torch.nn.functional as F
import torchvision.transforms.functional as tvf
import torchvision.transforms as tvtfms
import operator as op
from PIL import Image
from torch import nn
from timm import create_model
# For type hinting later on
import collections
import typing
def get_model():
net = create_model("vit_tiny_patch16_224", pretrained=False, num_classes=0, in_chans=3)
head = nn.Sequential(
nn.BatchNorm1d(192),
nn.Dropout(0.25),
nn.Linear(192, 512, bias=False),
nn.ReLU(inplace=True),
nn.BatchNorm1d(512),
nn.Dropout(0.5),
nn.Linear(512, 37, bias=False)
)
model = nn.Sequential(net, head)
return model
def copy_weight(name, parameter, state_dict):
"""
Takes in a layer `name`, model `parameter`, and `state_dict`
and loads the weights from `state_dict` into `parameter`
if it exists.
"""
# Part of the body
if name[0] == "0":
name = name[:2] + "model." + name[2:]
if name in state_dict.keys():
input_parameter = state_dict[name]
if input_parameter.shape == parameter.shape:
parameter.copy_(input_parameter)
else:
print(f'Shape mismatch at layer: {name}, skipping')
else:
print(f'{name} is not in the state_dict, skipping.')
def apply_weights(input_model:nn.Module, input_weights:collections.OrderedDict, application_function:callable):
"""
Takes an input state_dict and applies those weights to the `input_model`, potentially
with a modifier function.
Args:
input_model (`nn.Module`):
The model that weights should be applied to
input_weights (`collections.OrderedDict`):
A dictionary of weights, the trained model's `state_dict()`
application_function (`callable`):
A function that takes in one parameter and layer name from `input_model`
and the `input_weights`. Should apply the weights from the state dict into `input_model`.
"""
model_dict = input_model.state_dict()
for name, parameter in model_dict.items():
application_function(name, parameter, input_weights)
input_model.load_state_dict(model_dict)