Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn.functional as F | |
import torchvision.transforms.functional as tvf | |
import torchvision.transforms as tvtfms | |
import operator as op | |
from PIL import Image | |
from torch import nn | |
from timm import create_model | |
# For type hinting later on | |
import collections | |
import typing | |
def get_model(): | |
net = create_model("vit_tiny_patch16_224", pretrained=False, num_classes=0, in_chans=3) | |
head = nn.Sequential( | |
nn.BatchNorm1d(192), | |
nn.Dropout(0.25), | |
nn.Linear(192, 512, bias=False), | |
nn.ReLU(inplace=True), | |
nn.BatchNorm1d(512), | |
nn.Dropout(0.5), | |
nn.Linear(512, 37, bias=False) | |
) | |
model = nn.Sequential(net, head) | |
return model | |
def copy_weight(name, parameter, state_dict): | |
""" | |
Takes in a layer `name`, model `parameter`, and `state_dict` | |
and loads the weights from `state_dict` into `parameter` | |
if it exists. | |
""" | |
# Part of the body | |
if name[0] == "0": | |
name = name[:2] + "model." + name[2:] | |
if name in state_dict.keys(): | |
input_parameter = state_dict[name] | |
if input_parameter.shape == parameter.shape: | |
parameter.copy_(input_parameter) | |
else: | |
print(f'Shape mismatch at layer: {name}, skipping') | |
else: | |
print(f'{name} is not in the state_dict, skipping.') | |
def apply_weights(input_model:nn.Module, input_weights:collections.OrderedDict, application_function:callable): | |
""" | |
Takes an input state_dict and applies those weights to the `input_model`, potentially | |
with a modifier function. | |
Args: | |
input_model (`nn.Module`): | |
The model that weights should be applied to | |
input_weights (`collections.OrderedDict`): | |
A dictionary of weights, the trained model's `state_dict()` | |
application_function (`callable`): | |
A function that takes in one parameter and layer name from `input_model` | |
and the `input_weights`. Should apply the weights from the state dict into `input_model`. | |
""" | |
model_dict = input_model.state_dict() | |
for name, parameter in model_dict.items(): | |
application_function(name, parameter, input_weights) | |
input_model.load_state_dict(model_dict) |