import torch import torch.nn.functional as F import torchvision.transforms.functional as tvf import torchvision.transforms as tvtfms import operator as op from PIL import Image from torch import nn from timm import create_model # For type hinting later on import collections import typing def get_model(): net = create_model("vit_tiny_patch16_224", pretrained=False, num_classes=0, in_chans=3) head = nn.Sequential( nn.BatchNorm1d(192), nn.Dropout(0.25), nn.Linear(192, 512, bias=False), nn.ReLU(inplace=True), nn.BatchNorm1d(512), nn.Dropout(0.5), nn.Linear(512, 37, bias=False) ) model = nn.Sequential(net, head) return model def copy_weight(name, parameter, state_dict): """ Takes in a layer `name`, model `parameter`, and `state_dict` and loads the weights from `state_dict` into `parameter` if it exists. """ # Part of the body if name[0] == "0": name = name[:2] + "model." + name[2:] if name in state_dict.keys(): input_parameter = state_dict[name] if input_parameter.shape == parameter.shape: parameter.copy_(input_parameter) else: print(f'Shape mismatch at layer: {name}, skipping') else: print(f'{name} is not in the state_dict, skipping.') def apply_weights(input_model:nn.Module, input_weights:collections.OrderedDict, application_function:callable): """ Takes an input state_dict and applies those weights to the `input_model`, potentially with a modifier function. Args: input_model (`nn.Module`): The model that weights should be applied to input_weights (`collections.OrderedDict`): A dictionary of weights, the trained model's `state_dict()` application_function (`callable`): A function that takes in one parameter and layer name from `input_model` and the `input_weights`. Should apply the weights from the state dict into `input_model`. """ model_dict = input_model.state_dict() for name, parameter in model_dict.items(): application_function(name, parameter, input_weights) input_model.load_state_dict(model_dict)