File size: 3,284 Bytes
5e4969d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import os
from langchain.document_loaders import (
    PyPDFLoader,
    TextLoader,
    Docx2txtLoader
)

from langchain.text_splitter import CharacterTextSplitter
# from PyPDF2 import PdfReader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_google_genai import GoogleGenerativeAIEmbeddings
import google.generativeai as genai
from langchain.vectorstores import FAISS
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain.chains.question_answering import load_qa_chain
from langchain.prompts import PromptTemplate
from langchain.memory import ConversationBufferMemory
from dotenv import load_dotenv
from src.agent import build_qa_chain
import gradio as gr
load_dotenv()

genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))

class AgentChain:
    def __init__(self):
        self.agent = None
        self.db = None

agent_chain = AgentChain()
agent_chain.agent = build_qa_chain()

def extract_text_from_files(docs):
    documents = []
    files = os.listdir(docs)
    
    if len(files) == 0:
        return "Directory is empty"

    base_dir = docs.split("/")
    base_dir = "/".join(base_dir)

    for file in files:
        if file.endswith(".pdf"):
            pdf_path=os.path.join(base_dir, file)
            loader=PyPDFLoader(pdf_path)
            documents.extend(loader.load())
        elif file.endswith('.docx') or file.endswith('.doc'):
            doc_path=os.path.join(base_dir, file)
            loader=Docx2txtLoader(doc_path)
            documents.extend(loader.load())
        elif file.endswith('.txt'):
            text_path=os.path.join(base_dir, file)
            loader=TextLoader(text_path)
            documents.extend(loader.load())
    return documents

def extract_text_from_file(file):
    documents = []
    filename = str(file)
    if filename.endswith(".pdf"):
        loader=PyPDFLoader(file)
        documents.extend(loader.load())
    elif filename.endswith('.docx') or file.endswith('.doc'):
        loader=Docx2txtLoader(file)
        documents.extend(loader.load())
    elif filename.endswith('.txt'):
        loader=TextLoader(file)
        documents.extend(loader.load())
    print("Text extracted")
    return documents

def get_text_chunks(text):
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000)
    chunks = text_splitter.split_documents(text)
    print("Chunks splitted")
    return chunks

def save_in_faiss(text_chunks, save=False):
    embeddings = GoogleGenerativeAIEmbeddings(model = "models/embedding-001")
    vector_store = FAISS.from_documents(text_chunks, embedding=embeddings)
    if save:
        vector_store.save_local("faiss_index")
    print("Document search created")
    return vector_store

def process_files(file):
    documents = extract_text_from_file(file)
    text_chunks = get_text_chunks(documents)
    vector_store = save_in_faiss(text_chunks)
    agent_chain.db = vector_store
    gr.Info("Processing completed")
    return file

def answer_query(message, history):
    if agent_chain.db is not None:
        docs = agent_chain.db.similarity_search(message)
    docs = []
    response = agent_chain.agent({"input_documents": docs, "human_input": message}, return_only_outputs=True)
    return response['output_text']