File size: 3,250 Bytes
8db7130 1a12ad2 8db7130 63fe18d 8db7130 1a12ad2 8db7130 1a12ad2 8db7130 1a12ad2 8db7130 8b53196 123fa4e 0de3469 1a12ad2 6f35e7c 0de3469 8db7130 1a12ad2 63fe18d 1a12ad2 63fe18d 1a12ad2 63fe18d 1a12ad2 63fe18d 1a12ad2 63fe18d 1a12ad2 63fe18d 15c1930 1a12ad2 8db7130 b749972 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 |
# -*- coding: utf-8 -*-
"""app.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1WeNkl1pYnT0qeOTsUFooLFLJ1arRHC00
"""
# %pip install ultralytics -q
# %pip install gradio -q
import cv2
import os
import PIL.Image as Image
import gradio as gr
import numpy as np
from ultralytics import YOLO
# load trained model
model = YOLO("best.onnx")
# image inference function
def predict_image(img, conf_threshold, iou_threshold):
results = model.predict(
source=img,
conf=conf_threshold,
iou=iou_threshold,
show_labels=True,
show_conf=True,
imgsz=640,
)
for r in results:
im_array = r.plot()
im = Image.fromarray(im_array[..., ::-1])
return im
# directory for examples
image_directory = "/home/user/app/image"
video_directory = "/home/user/app/video"
# interface gradio setting for image
image_iface = gr.Interface(
fn=predict_image,
inputs=[
gr.Image(type="pil", label="Upload Image"),
gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"),
gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold")
],
outputs=gr.Image(type="pil", label="Result"),
title="Fire Detection using YOLOv8n on Gradio",
description="Upload images for inference. The Ultralytics YOLOv8n trained model is used for this.",
examples=[
[os.path.join(image_directory, "fire_image_1.jpg"), 0.25, 0.45],
[os.path.join(image_directory, "fire_image_3.jpg"), 0.25, 0.45],
]
)
# convert PIL image objects to numpy arrays
def pil_to_cv2(pil_image):
open_cv_image = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)
return open_cv_image
# process video, convert frame to PIL image
def process_video(video_path):
cap = cv2.VideoCapture(video_path)
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
# Model expects PIL Image format
pil_img = Image.fromarray(frame[..., ::-1]) # Convert BGR to RGB
result = model.predict(source=pil_img)
for r in result:
im_array = r.plot()
processed_frame = Image.fromarray(im_array[..., ::-1]) # Convert RGB back to BGR
yield processed_frame # generate frame one by one
cap.release()
# You may choose to display each frame or compile them back using cv2 or a similar library
# Display the processed frames
# return processed_frames[-1] # Example, returning the last processed frame
# interface setting for video
video_iface = gr.Interface(
fn=process_video,
inputs=[
gr.Video(label="Upload Video", interactive=True)
],
outputs=gr.Image(type="pil",label="Result"),
title="Fire Detection using YOLOv8n on Gradio",
description="Upload video for inference. The Ultralytics YOLOv8n trained model is used for inference.",
examples=[
[os.path.join(video_directory, "video_fire_1.mp4")],
[os.path.join(video_directory, "video_fire_2.mp4")],
]
)
demo = gr.TabbedInterface([image_iface, video_iface], ["Image Inference", "Video Inference"])
if __name__ == '__main__':
demo.launch() |