tax-convos-demo / app.py
mdacampora's picture
Update app.py
9314a2e
import torch
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer
peft_model_id = f"mdacampora/tax-convos-demo"
config = PeftConfig.from_pretrained(peft_model_id)
model = AutoModelForCausalLM.from_pretrained(
config.base_model_name_or_path,
return_dict=True,
load_in_8bit=True,
device_map="auto",
)
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
# Load the Lora model
model = PeftModel.from_pretrained(model, peft_model_id)
def make_inference(problem, answer):
batch = tokenizer(
problem,
return_tensors="pt",
)
with torch.cuda.amp.autocast():
output_tokens = model.generate(**batch, max_new_tokens=50)
# def make_inference(conversation, response):
# conversation_history = conversation
# response = ""
# while True:
# batch = tokenizer(
# f"### Problem:\n{conversation_history}\n{response}",
# return_tensors="pt",
# )
# with torch.cuda.amp.autocast():
# output_tokens = model.generate(**batch, max_new_tokens=50)
# new_response = tokenizer.decode(output_tokens[0], skip_special_tokens=True)
# if new_response.strip() == "":
# break
# response = f"\n{new_response}"
# conversation_history += response
# return conversation_history
if __name__ == "__main__":
# make a gradio interface
import gradio as gr
# gr.Interface(
# make_inference,
# [
# gr.inputs.Textbox(lines=1, label="Problem"),
# ],
# gr.outputs.Textbox( label="Transcript"),
# title="tax-convos-demo",
# description="trying to create a crude chat bot for tax services.",
# ).launch()
gr.Interface(
make_inference,
[
gr.inputs.Textbox(lines=5, label="Conversation"),
],
gr.outputs.Textbox(label="Updated Conversation"),
title="tax-convos-demo",
description="Ask any tax-related questions you may have.",
).launch()