Spaces:
Runtime error
Runtime error
import torch | |
from peft import PeftModel, PeftConfig | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
peft_model_id = f"mdacampora/tax-convos-demo" | |
config = PeftConfig.from_pretrained(peft_model_id) | |
model = AutoModelForCausalLM.from_pretrained( | |
config.base_model_name_or_path, | |
return_dict=True, | |
load_in_8bit=True, | |
device_map="auto", | |
) | |
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) | |
# Load the Lora model | |
model = PeftModel.from_pretrained(model, peft_model_id) | |
def make_inference(problem, answer): | |
batch = tokenizer( | |
problem, | |
return_tensors="pt", | |
) | |
with torch.cuda.amp.autocast(): | |
output_tokens = model.generate(**batch, max_new_tokens=50) | |
# def make_inference(conversation, response): | |
# conversation_history = conversation | |
# response = "" | |
# while True: | |
# batch = tokenizer( | |
# f"### Problem:\n{conversation_history}\n{response}", | |
# return_tensors="pt", | |
# ) | |
# with torch.cuda.amp.autocast(): | |
# output_tokens = model.generate(**batch, max_new_tokens=50) | |
# new_response = tokenizer.decode(output_tokens[0], skip_special_tokens=True) | |
# if new_response.strip() == "": | |
# break | |
# response = f"\n{new_response}" | |
# conversation_history += response | |
# return conversation_history | |
if __name__ == "__main__": | |
# make a gradio interface | |
import gradio as gr | |
# gr.Interface( | |
# make_inference, | |
# [ | |
# gr.inputs.Textbox(lines=1, label="Problem"), | |
# ], | |
# gr.outputs.Textbox( label="Transcript"), | |
# title="tax-convos-demo", | |
# description="trying to create a crude chat bot for tax services.", | |
# ).launch() | |
gr.Interface( | |
make_inference, | |
[ | |
gr.inputs.Textbox(lines=5, label="Conversation"), | |
], | |
gr.outputs.Textbox(label="Updated Conversation"), | |
title="tax-convos-demo", | |
description="Ask any tax-related questions you may have.", | |
).launch() | |