import torch from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer peft_model_id = f"mdacampora/tax-convos-demo2" config = PeftConfig.from_pretrained(peft_model_id) model = AutoModelForCausalLM.from_pretrained( config.base_model_name_or_path, return_dict=True, load_in_8bit=True, device_map="auto", ) tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) # Load the Lora model model = PeftModel.from_pretrained(model, peft_model_id) def make_inference(conversation): conversation_history = conversation response = "" while True: batch = tokenizer( f"### Problem:\n{conversation_history}\n{response}", return_tensors="pt", ) with torch.cuda.amp.autocast(): output_tokens = model.generate(**batch, max_new_tokens=50) new_response = tokenizer.decode(output_tokens[0], skip_special_tokens=True) if new_response.strip() == "": break response = f"\n{new_response}" conversation_history += response return conversation_history if __name__ == "__main__": # make a gradio interface import gradio as gr # gr.Interface( # make_inference, # [ # gr.inputs.Textbox(lines=1, label="Problem"), # ], # gr.outputs.Textbox( label="Transcript"), # title="tax-convos-demo", # description="trying to create a crude chat bot for tax services.", # ).launch() gr.Interface( make_inference, [ gr.inputs.Textbox(lines=5, label="Conversation"), ], gr.outputs.Textbox(label="Updated Conversation"), title="tax-convos-demo", description="Ask any tax-related questions you may have.", ).launch()