Spaces:
Sleeping
Sleeping
File size: 6,615 Bytes
9a4530c 2c0250d 9a4530c 6b2ffe4 9a4530c fe114b6 9a4530c fe114b6 9a4530c fe114b6 3f6b2aa fe114b6 9a4530c fe114b6 27431a7 9a4530c fe114b6 27431a7 9a4530c 6b2ffe4 9a4530c 6b2ffe4 9a4530c 6b2ffe4 9a4530c 843d2c1 9a4530c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
import streamlit as st
import folium
from streamlit_folium import st_folium
import requests
from PIL import Image
from io import BytesIO
import numpy as np
import torch
from sklearn.utils.extmath import softmax
import open_clip
import os
knnpath = '20241204-ams-no-env-open_clip_ViT-H-14-378-quickgelu.npz'
clip_model_name = 'ViT-H-14-378-quickgelu'
pretrained_name = 'dfn5b'
categories = ['walkability', 'bikeability', 'pleasantness', 'greenness', 'safety']
# Set page config
st.set_page_config(
page_title="Percept",
layout="wide"
)
# Securely get the token from environment variables
MAPILLARY_ACCESS_TOKEN = os.environ.get('MAPILLARY_ACCESS_TOKEN')
# Verify token exists
if not MAPILLARY_ACCESS_TOKEN:
st.error("Mapillary access token not found. Please configure it in the Space secrets.")
st.stop()
def get_bounding_box(lat, lon):
"""
Create a bounding box around a point that extends roughly 25 meters in each direction
at Amsterdam's latitude (52.37°N):
- 0.000224 degrees latitude = 25 meters N/S
- 0.000368 degrees longitude = 25 meters E/W
"""
lat_offset = 0.000224 # 25 meters in latitude
lon_offset = 0.000368 # 25 meters in longitude
return [
lon - lon_offset, # min longitude
lat - lat_offset, # min latitude
lon + lon_offset, # max longitude
lat + lat_offset # max latitude
]
def get_nearest_image(lat, lon):
"""
Get the nearest Mapillary image to given coordinates
"""
bbox = get_bounding_box(lat, lon)
params = {
'fields': 'id,thumb_1024_url',
'limit': 1,
'is_pano': False,
'bbox': f'{bbox[0]},{bbox[1]},{bbox[2]},{bbox[3]}'
}
header = {'Authorization' : 'OAuth {}'.format(MAPILLARY_ACCESS_TOKEN)}
try:
response = requests.get(
"https://graph.mapillary.com/images",
params=params,
headers=header
)
response.raise_for_status()
data = response.json()
if 'data' in data and len(data['data']) > 0:
return data['data'][0]
return None
except requests.exceptions.RequestException as e:
st.error(f"Error fetching Mapillary data: {str(e)}")
return None
@st.cache_resource
def load_model():
"""Load the OpenCLIP model and return model and processor"""
model, _, preprocess = open_clip.create_model_and_transforms(
clip_model_name, pretrained=pretrained_name
)
tokenizer = open_clip.get_tokenizer(clip_model_name)
return model, preprocess, tokenizer
def process_image(image, preprocess):
"""Process image and return tensor"""
if isinstance(image, str):
# If image is a URL
response = requests.get(image)
image = Image.open(BytesIO(response.content))
# Ensure image is in RGB mode
if image.mode != 'RGB':
image = image.convert('RGB')
processed_image = preprocess(image).unsqueeze(0)
return processed_image
def knn_get_score(knn, k, cat, vec):
allvecs = knn[f'{cat}_vecs']
if debug: st.write('allvecs.shape', allvecs.shape)
scores = knn[f'{cat}_scores']
if debug: st.write('scores.shape', scores.shape)
# Compute cosine similiarity of vec against allvecs
# (both are already normalized)
cos_sim_table = vec @ allvecs.T
if debug: st.write('cos_sim_table.shape', cos_sim_table.shape)
# Get sorted array indices by similiarity in descending order
sortinds = np.flip(np.argsort(cos_sim_table, axis=1), axis=1)
if debug: st.write('sortinds.shape', sortinds.shape)
# Get corresponding scores for the sorted vectors
kscores = scores[sortinds][:,:k]
if debug: st.write('kscores.shape', kscores.shape)
# Get actual sorted similiarity scores
# (line copied from clip_retrieval_knn.py even though sortinds.shape[0] == 1 here)
ksims = cos_sim_table[np.expand_dims(np.arange(sortinds.shape[0]), axis=1), sortinds]
ksims = ksims[:,:k]
if debug: st.write('ksims.shape', ksims.shape)
# Apply normalization after exponential formula
ksims = softmax(10**ksims)
# Weighted sum
kweightedscore = np.sum(kscores * ksims)
return kweightedscore
@st.cache_resource
def load_knn():
return np.load(knnpath)
def main():
st.title("Percept: Map Explorer")
try:
with st.spinner('Loading CLIP model... This may take a moment.'):
model, preprocess, tokenizer = load_model()
device = "cuda" if torch.cuda.is_available() else "cpu"
model = model.to(device)
except Exception as e:
st.error(f"Error loading model: {str(e)}")
st.info("Please make sure you have enough memory and the correct dependencies installed.")
with st.spinner('Loading KNN model... This may take a moment.'):
knn = load_knn()
# Initialize the map centered on Amsterdam
amsterdam_coords = [52.3676, 4.9041]
m = folium.Map(location=amsterdam_coords, zoom_start=13)
# Add a marker for Amsterdam city center
folium.Marker(
amsterdam_coords,
popup="Amsterdam City Center",
icon=folium.Icon(color="red", icon="info-sign")
).add_to(m)
# Display the map and get clicked coordinates
map_data = st_folium(m, height=400, width=700)
# Check if a location was clicked
if map_data['last_clicked']:
lat = map_data['last_clicked']['lat']
lng = map_data['last_clicked']['lng']
st.write(f"Selected coordinates: {lat:.4f}, {lng:.4f}")
# Get nearest Mapillary image
with st.spinner('Fetching street view image...'):
image_data = get_nearest_image(lat, lng)
if image_data:
# Display the image
try:
response = requests.get(image_data['thumb_1024_url'])
image = Image.open(BytesIO(response.content))
st.image(image, caption="Street View", width=400)
# Add download button
st.download_button(
label="Download Image",
data=response.content,
file_name=f"streetview_{lat}_{lng}.jpg",
mime="image/jpeg"
)
except Exception as e:
st.error(f"Error displaying image: {str(e)}")
else:
st.warning("No street view images found at this location. Try a different spot.")
if __name__ == "__main__":
main()
|