File size: 6,615 Bytes
9a4530c
 
 
 
 
 
2c0250d
 
 
 
9a4530c
 
6b2ffe4
 
 
 
 
 
 
 
 
 
 
 
9a4530c
 
 
 
 
 
 
 
fe114b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a4530c
 
 
fe114b6
9a4530c
 
fe114b6
3f6b2aa
fe114b6
9a4530c
fe114b6
27431a7
9a4530c
fe114b6
 
27431a7
 
9a4530c
 
 
 
 
 
 
 
 
 
 
 
6b2ffe4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a4530c
6b2ffe4
9a4530c
6b2ffe4
 
 
 
 
 
 
 
 
 
 
 
9a4530c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
843d2c1
9a4530c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import streamlit as st
import folium
from streamlit_folium import st_folium
import requests
from PIL import Image
from io import BytesIO
import numpy as np
import torch
from sklearn.utils.extmath import softmax
import open_clip
import os

knnpath = '20241204-ams-no-env-open_clip_ViT-H-14-378-quickgelu.npz'
clip_model_name = 'ViT-H-14-378-quickgelu'
pretrained_name = 'dfn5b'

categories = ['walkability', 'bikeability', 'pleasantness', 'greenness', 'safety']

# Set page config
st.set_page_config(
    page_title="Percept",
    layout="wide"
)

# Securely get the token from environment variables
MAPILLARY_ACCESS_TOKEN = os.environ.get('MAPILLARY_ACCESS_TOKEN')

# Verify token exists
if not MAPILLARY_ACCESS_TOKEN:
    st.error("Mapillary access token not found. Please configure it in the Space secrets.")
    st.stop()

def get_bounding_box(lat, lon):
    """
    Create a bounding box around a point that extends roughly 25 meters in each direction
    at Amsterdam's latitude (52.37°N):
    - 0.000224 degrees latitude = 25 meters N/S
    - 0.000368 degrees longitude = 25 meters E/W
    """
    lat_offset = 0.000224  # 25 meters in latitude
    lon_offset = 0.000368  # 25 meters in longitude
    return [
        lon - lon_offset,  # min longitude
        lat - lat_offset,  # min latitude
        lon + lon_offset,  # max longitude
        lat + lat_offset   # max latitude
    ]

def get_nearest_image(lat, lon):
    """
    Get the nearest Mapillary image to given coordinates
    """
    bbox = get_bounding_box(lat, lon)
    params = {
        'fields': 'id,thumb_1024_url',
        'limit': 1,
        'is_pano': False,
        'bbox': f'{bbox[0]},{bbox[1]},{bbox[2]},{bbox[3]}'
    }

    header = {'Authorization' : 'OAuth {}'.format(MAPILLARY_ACCESS_TOKEN)}
    try:
        response = requests.get(
            "https://graph.mapillary.com/images",
            params=params,
            headers=header
        )
        response.raise_for_status()
        data = response.json()
        
        if 'data' in data and len(data['data']) > 0:
            return data['data'][0]
        return None
        
    except requests.exceptions.RequestException as e:
        st.error(f"Error fetching Mapillary data: {str(e)}")
        return None

@st.cache_resource
def load_model():
    """Load the OpenCLIP model and return model and processor"""
    model, _, preprocess = open_clip.create_model_and_transforms(
        clip_model_name, pretrained=pretrained_name
    )
    tokenizer = open_clip.get_tokenizer(clip_model_name)
    return model, preprocess, tokenizer

def process_image(image, preprocess):
    """Process image and return tensor"""
    if isinstance(image, str):
        # If image is a URL
        response = requests.get(image)
        image = Image.open(BytesIO(response.content))
    # Ensure image is in RGB mode
    if image.mode != 'RGB':
        image = image.convert('RGB')
    processed_image = preprocess(image).unsqueeze(0)
    return processed_image

def knn_get_score(knn, k, cat, vec):
    allvecs = knn[f'{cat}_vecs']
    if debug: st.write('allvecs.shape', allvecs.shape)
    scores = knn[f'{cat}_scores']
    if debug: st.write('scores.shape', scores.shape)
    # Compute cosine similiarity of vec against allvecs
    # (both are already normalized)
    cos_sim_table = vec @ allvecs.T
    if debug: st.write('cos_sim_table.shape', cos_sim_table.shape)
    # Get sorted array indices by similiarity in descending order
    sortinds = np.flip(np.argsort(cos_sim_table, axis=1), axis=1)
    if debug: st.write('sortinds.shape', sortinds.shape)
    # Get corresponding scores for the sorted vectors
    kscores = scores[sortinds][:,:k]
    if debug: st.write('kscores.shape', kscores.shape)
    # Get actual sorted similiarity scores
    # (line copied from clip_retrieval_knn.py even though sortinds.shape[0] == 1 here)
    ksims = cos_sim_table[np.expand_dims(np.arange(sortinds.shape[0]), axis=1), sortinds]
    ksims = ksims[:,:k]
    if debug: st.write('ksims.shape', ksims.shape)
    # Apply normalization after exponential formula
    ksims = softmax(10**ksims)
    # Weighted sum
    kweightedscore = np.sum(kscores * ksims)
    return kweightedscore


@st.cache_resource
def load_knn():
    return np.load(knnpath)

def main():
    st.title("Percept: Map Explorer")
    
    try:
        with st.spinner('Loading CLIP model... This may take a moment.'):
            model, preprocess, tokenizer = load_model()
        device = "cuda" if torch.cuda.is_available() else "cpu"
        model = model.to(device)
    except Exception as e:
        st.error(f"Error loading model: {str(e)}")
        st.info("Please make sure you have enough memory and the correct dependencies installed.")

    with st.spinner('Loading KNN model... This may take a moment.'):
        knn = load_knn()

    # Initialize the map centered on Amsterdam
    amsterdam_coords = [52.3676, 4.9041]
    m = folium.Map(location=amsterdam_coords, zoom_start=13)
    
    # Add a marker for Amsterdam city center
    folium.Marker(
        amsterdam_coords,
        popup="Amsterdam City Center",
        icon=folium.Icon(color="red", icon="info-sign")
    ).add_to(m)
    
    # Display the map and get clicked coordinates
    map_data = st_folium(m, height=400, width=700)
    
    # Check if a location was clicked
    if map_data['last_clicked']:
        lat = map_data['last_clicked']['lat']
        lng = map_data['last_clicked']['lng']
        
        st.write(f"Selected coordinates: {lat:.4f}, {lng:.4f}")
        
        # Get nearest Mapillary image
        with st.spinner('Fetching street view image...'):
            image_data = get_nearest_image(lat, lng)
            
            if image_data:
                # Display the image
                try:
                    response = requests.get(image_data['thumb_1024_url'])
                    image = Image.open(BytesIO(response.content))
                    st.image(image, caption="Street View", width=400)
                    
                    # Add download button
                    st.download_button(
                        label="Download Image",
                        data=response.content,
                        file_name=f"streetview_{lat}_{lng}.jpg",
                        mime="image/jpeg"
                    )
                    
                except Exception as e:
                    st.error(f"Error displaying image: {str(e)}")
            else:
                st.warning("No street view images found at this location. Try a different spot.")

if __name__ == "__main__":
    main()