Spaces:
Running
Running
import streamlit as st | |
from transformers import pipeline | |
import logging | |
# Setup logging | |
def setup_logging(): | |
logging.basicConfig( | |
level=logging.INFO, | |
format='%(asctime)s - %(levelname)s - %(message)s', | |
handlers=[ | |
logging.StreamHandler() | |
] | |
) | |
def main(): | |
setup_logging() | |
logging.info("Starting the Streamlit app.") | |
# Initialize the translation pipeline for English to Hinglish | |
translator = pipeline("translation", model="surajp/eng_to_hinglish") # Replace with your desired model | |
# Streamlit UI | |
st.title("English to Hinglish Translator") | |
st.write("Type or paste your English text below, and get the Hinglish translation.") | |
text = st.text_area("Enter your English text here:", placeholder="Type here...") | |
if st.button("Translate"): | |
try: | |
if text: | |
logging.info("Translating English text to Hinglish.") | |
result = translator(text, max_length=200) | |
translation = result[0]['translation_text'] if result else "No translation available." | |
st.text_area("Hinglish Translation:", translation, height=200) | |
logging.info("Translation completed successfully.") | |
else: | |
st.warning("Please enter text to translate.") | |
except Exception as e: | |
logging.error(f"Error during translation: {e}") | |
st.error("An error occurred during translation. Please check the logs for more details.") | |
logging.info("Closing the Streamlit app.") | |
if __name__ == "__main__": | |
main() | |