Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,63 +1,85 @@
|
|
1 |
-
import
|
2 |
import logging
|
3 |
-
from
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
class TextSummarizer:
|
6 |
-
def __init__(self, model_name="facebook/bart-large-cnn"):
|
7 |
-
self.summarizer = pipeline("summarization", model=model_name)
|
8 |
-
|
9 |
-
def summarize(self, text):
|
10 |
-
if not text:
|
11 |
-
return "No text to summarize."
|
12 |
-
try:
|
13 |
-
summary = self.summarizer(
|
14 |
-
text,
|
15 |
-
max_length=150,
|
16 |
-
min_length=50,
|
17 |
-
do_sample=False
|
18 |
-
)[0]['summary_text']
|
19 |
-
return summary
|
20 |
-
except Exception as e:
|
21 |
-
return f"Summarization error: {str(e)}"
|
22 |
-
|
23 |
-
def process_input(input_type, input_data):
|
24 |
-
try:
|
25 |
-
# Direct text handling
|
26 |
-
if input_type == "Text":
|
27 |
-
return summarizer.summarize(input_data)
|
28 |
-
|
29 |
-
# File input handling (simplified)
|
30 |
-
if input_type in ["Text File", "PDF", "DOCX"]:
|
31 |
-
with open(input_data.name, 'r', encoding='utf-8') as file:
|
32 |
-
text = file.read()
|
33 |
-
return summarizer.summarize(text)
|
34 |
-
|
35 |
-
# Audio input (placeholder - would require speech-to-text)
|
36 |
-
if input_type == "Audio":
|
37 |
-
return "Audio summarization not implemented"
|
38 |
-
|
39 |
-
return "Invalid input type"
|
40 |
-
|
41 |
-
except Exception as e:
|
42 |
-
return f"Processing error: {str(e)}"
|
43 |
|
44 |
def main():
|
45 |
-
|
46 |
-
|
|
|
47 |
|
48 |
-
#
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
58 |
)
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
if __name__ == "__main__":
|
63 |
-
main()
|
|
|
1 |
+
import streamlit as st
|
2 |
import logging
|
3 |
+
from models.summarizer import TextSummarizer
|
4 |
+
from services.text_input_handler import handle_text_input
|
5 |
+
from services.file_input_handler import read_text_file, read_pdf_file, read_docx_file
|
6 |
+
from services.audio_input_handler import audio_to_text
|
7 |
+
from utils.logging_utils import setup_logging
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
def main():
|
11 |
+
# Setup logging
|
12 |
+
setup_logging()
|
13 |
+
logging.info("Starting GenAI Lab Report Analyzer with Streamlit.")
|
14 |
|
15 |
+
# Initialize summarizer
|
16 |
+
summarizer = TextSummarizer()
|
17 |
+
|
18 |
+
# Streamlit UI
|
19 |
+
st.title("GenAI Lab Report Analyzer")
|
20 |
+
st.write("Upload a file, record audio, or type text to generate a summary. Select the appropriate input type and provide the input.")
|
21 |
+
|
22 |
+
input_type = st.radio(
|
23 |
+
"Select Input Type:",
|
24 |
+
options=["Text", "Text File", "PDF", "DOCX", "Audio"],
|
25 |
+
index=0
|
26 |
)
|
27 |
+
|
28 |
+
file = None
|
29 |
+
text = None
|
30 |
+
audio = None
|
31 |
+
|
32 |
+
if input_type == "Text":
|
33 |
+
text = st.text_area("Enter your text here:", placeholder="Type your text here...")
|
34 |
+
elif input_type in ["Text File", "PDF", "DOCX"]:
|
35 |
+
file = st.file_uploader(f"Upload your {input_type}:", type=["txt", "pdf", "docx"])
|
36 |
+
elif input_type == "Audio":
|
37 |
+
audio = st.file_uploader("Upload your audio file:", type=["wav", "mp3", "m4a"])
|
38 |
+
|
39 |
+
if st.button("Report Result"):
|
40 |
+
try:
|
41 |
+
if input_type == "Text" and text:
|
42 |
+
logging.info("Processing text input.")
|
43 |
+
processed_text = handle_text_input(text)
|
44 |
+
summary = summarizer.summarize(processed_text)
|
45 |
+
logging.info("Text input processed successfully.")
|
46 |
+
elif input_type in ["Text File", "PDF", "DOCX"] and file:
|
47 |
+
if input_type == "Text File":
|
48 |
+
logging.info(f"Processing text file: {file.name}")
|
49 |
+
processed_text = read_text_file(file)
|
50 |
+
elif input_type == "PDF":
|
51 |
+
logging.info(f"Processing PDF file: {file.name}")
|
52 |
+
processed_text = read_pdf_file(file)
|
53 |
+
elif input_type == "DOCX":
|
54 |
+
logging.info(f"Processing DOCX file: {file.name}")
|
55 |
+
processed_text = read_docx_file(file)
|
56 |
+
|
57 |
+
if processed_text:
|
58 |
+
summary = summarizer.summarize(processed_text)
|
59 |
+
logging.info(f"{input_type} processed successfully.")
|
60 |
+
else:
|
61 |
+
summary = "Failed to process the file. Check logs for more details."
|
62 |
+
logging.error(f"Failed to process {input_type}: {file.name}")
|
63 |
+
elif input_type == "Audio" and audio:
|
64 |
+
logging.info("Processing audio input.")
|
65 |
+
processed_text = audio_to_text(audio)
|
66 |
+
if processed_text:
|
67 |
+
summary = summarizer.summarize(processed_text)
|
68 |
+
logging.info("Audio input processed successfully.")
|
69 |
+
else:
|
70 |
+
summary = "Failed to convert audio to text. Check logs for more details."
|
71 |
+
logging.error("Failed to convert audio to text.")
|
72 |
+
else:
|
73 |
+
summary = "Invalid input. Please provide a valid file or text."
|
74 |
+
logging.warning("Invalid input type provided.")
|
75 |
+
|
76 |
+
st.text_area("Report Result:", summary, height=200)
|
77 |
+
except Exception as e:
|
78 |
+
logging.error(f"Error during summarization: {e}")
|
79 |
+
st.error("An error occurred during summarization. Please check the logs for more details.")
|
80 |
+
|
81 |
+
logging.info("Closing GenAI Lab Report Analyzer with Streamlit.")
|
82 |
+
|
83 |
|
84 |
if __name__ == "__main__":
|
85 |
+
main()
|