Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,83 +1,29 @@
|
|
1 |
import streamlit as st
|
2 |
-
import
|
3 |
-
from models.summarizer import TextSummarizer
|
4 |
-
from services.text_input_handler import handle_text_input
|
5 |
-
from services.file_input_handler import read_text_file, read_pdf_file, read_docx_file
|
6 |
-
from services.audio_input_handler import audio_to_text
|
7 |
-
from utils.logging_utils import setup_logging
|
8 |
-
...
|
9 |
-
def main():
|
10 |
-
# Setup logging
|
11 |
-
setup_logging()
|
12 |
-
logging.info("Starting GenAI Lab Report Analyzer with Streamlit.")
|
13 |
-
|
14 |
-
# Initialize summarizer
|
15 |
-
summarizer = TextSummarizer()
|
16 |
-
|
17 |
-
# Streamlit UI
|
18 |
-
st.title("GenAI Lab Report Analyzer")
|
19 |
-
st.write("Upload a file, record audio, or type text to generate a summary. Select the appropriate input type and provide the input.")
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
)
|
26 |
-
|
27 |
-
file = None
|
28 |
-
text = None
|
29 |
-
audio = None
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
elif input_type in ["Text File", "PDF", "DOCX"]:
|
34 |
-
file = st.file_uploader(f"Upload your {input_type}:", type=["txt", "pdf", "docx"])
|
35 |
-
elif input_type == "Audio":
|
36 |
-
audio = st.file_uploader("Upload your audio file:", type=["wav", "mp3", "m4a"])
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
if input_type == "Text" and text:
|
41 |
-
logging.info("Processing text input.")
|
42 |
-
processed_text = handle_text_input(text)
|
43 |
-
summary = summarizer.summarize(processed_text)
|
44 |
-
logging.info("Text input processed successfully.")
|
45 |
-
elif input_type in ["Text File", "PDF", "DOCX"] and file:
|
46 |
-
if input_type == "Text File":
|
47 |
-
logging.info(f"Processing text file: {file.name}")
|
48 |
-
processed_text = read_text_file(file)
|
49 |
-
elif input_type == "PDF":
|
50 |
-
logging.info(f"Processing PDF file: {file.name}")
|
51 |
-
processed_text = read_pdf_file(file)
|
52 |
-
elif input_type == "DOCX":
|
53 |
-
logging.info(f"Processing DOCX file: {file.name}")
|
54 |
-
processed_text = read_docx_file(file)
|
55 |
-
|
56 |
-
if processed_text:
|
57 |
-
summary = summarizer.summarize(processed_text)
|
58 |
-
logging.info(f"{input_type} processed successfully.")
|
59 |
-
else:
|
60 |
-
summary = "Failed to process the file. Check logs for more details."
|
61 |
-
logging.error(f"Failed to process {input_type}: {file.name}")
|
62 |
-
elif input_type == "Audio" and audio:
|
63 |
-
logging.info("Processing audio input.")
|
64 |
-
processed_text = audio_to_text(audio)
|
65 |
-
if processed_text:
|
66 |
-
summary = summarizer.summarize(processed_text)
|
67 |
-
logging.info("Audio input processed successfully.")
|
68 |
-
else:
|
69 |
-
summary = "Failed to convert audio to text. Check logs for more details."
|
70 |
-
logging.error("Failed to convert audio to text.")
|
71 |
-
else:
|
72 |
-
summary = "Invalid input. Please provide a valid file or text."
|
73 |
-
logging.warning("Invalid input type provided.")
|
74 |
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
-
logging.info("Closing GenAI Lab Report Analyzer with Streamlit.")
|
81 |
-
...
|
82 |
if __name__ == "__main__":
|
83 |
main()
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
+
def main():
|
5 |
+
# Set up the Streamlit app title and description
|
6 |
+
st.title("Hugging Face Model Summarization")
|
7 |
+
st.write("This app uses a Hugging Face model to summarize text. Enter your text below and click 'Summarize'.")
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
+
# Initialize the summarization pipeline from Hugging Face
|
10 |
+
summarizer = pipeline("summarization")
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
# Create a text area for user input
|
13 |
+
text = st.text_area("Enter text here:", placeholder="Type your text here...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
# Button to trigger summarization
|
16 |
+
if st.button("Summarize"):
|
17 |
+
if text:
|
18 |
+
try:
|
19 |
+
# Generate the summary using the Hugging Face model
|
20 |
+
summary = summarizer(text, max_length=130, min_length=30, do_sample=False)
|
21 |
+
st.write("Summary:")
|
22 |
+
st.write(summary[0]['summary_text'])
|
23 |
+
except Exception as e:
|
24 |
+
st.error(f"An error occurred during summarization: {e}")
|
25 |
+
else:
|
26 |
+
st.error("Please enter some text to summarize.")
|
27 |
|
|
|
|
|
28 |
if __name__ == "__main__":
|
29 |
main()
|