Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -31,30 +31,7 @@ def end_session(req: gr.Request):
|
|
31 |
shutil.rmtree(user_dir)
|
32 |
|
33 |
|
34 |
-
def preprocess_image(image: Image.Image) -> Image.Image:
|
35 |
-
"""
|
36 |
-
Preprocess the input image.
|
37 |
-
|
38 |
-
Args:
|
39 |
-
image (Image.Image): The input image.
|
40 |
-
|
41 |
-
Returns:
|
42 |
-
Image.Image: The preprocessed image.
|
43 |
-
"""
|
44 |
-
processed_image = pipeline.preprocess_image(image)
|
45 |
-
return processed_image
|
46 |
-
|
47 |
-
|
48 |
def preprocess_images(images: List[Tuple[Image.Image, str]]) -> List[Image.Image]:
|
49 |
-
"""
|
50 |
-
Preprocess a list of input images.
|
51 |
-
|
52 |
-
Args:
|
53 |
-
images (List[Tuple[Image.Image, str]]): The input images.
|
54 |
-
|
55 |
-
Returns:
|
56 |
-
List[Image.Image]: The preprocessed images.
|
57 |
-
"""
|
58 |
images = [image[0] for image in images]
|
59 |
processed_images = [pipeline.preprocess_image(image) for image in images]
|
60 |
return processed_images
|
@@ -101,15 +78,11 @@ def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
|
|
101 |
|
102 |
|
103 |
def get_seed(randomize_seed: bool, seed: int) -> int:
|
104 |
-
"""
|
105 |
-
Get the random seed.
|
106 |
-
"""
|
107 |
return np.random.randint(0, MAX_SEED) if randomize_seed else seed
|
108 |
|
109 |
|
110 |
@spaces.GPU
|
111 |
def image_to_3d(
|
112 |
-
image: Image.Image,
|
113 |
multiimages: List[Tuple[Image.Image, str]],
|
114 |
is_multiimage: bool,
|
115 |
seed: int,
|
@@ -120,24 +93,6 @@ def image_to_3d(
|
|
120 |
multiimage_algo: Literal["multidiffusion", "stochastic"],
|
121 |
req: gr.Request,
|
122 |
) -> Tuple[dict, str]:
|
123 |
-
"""
|
124 |
-
Convert an image to a 3D model.
|
125 |
-
|
126 |
-
Args:
|
127 |
-
image (Image.Image): The input image.
|
128 |
-
multiimages (List[Tuple[Image.Image, str]]): The input images in multi-image mode.
|
129 |
-
is_multiimage (bool): Whether is in multi-image mode.
|
130 |
-
seed (int): The random seed.
|
131 |
-
ss_guidance_strength (float): The guidance strength for sparse structure generation.
|
132 |
-
ss_sampling_steps (int): The number of sampling steps for sparse structure generation.
|
133 |
-
slat_guidance_strength (float): The guidance strength for structured latent generation.
|
134 |
-
slat_sampling_steps (int): The number of sampling steps for structured latent generation.
|
135 |
-
multiimage_algo (Literal["multidiffusion", "stochastic"]): The algorithm for multi-image generation.
|
136 |
-
|
137 |
-
Returns:
|
138 |
-
dict: The information of the generated 3D model.
|
139 |
-
str: The path to the video of the 3D model.
|
140 |
-
"""
|
141 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
142 |
if not is_multiimage:
|
143 |
outputs = pipeline.run(
|
@@ -187,17 +142,6 @@ def extract_glb(
|
|
187 |
texture_size: int,
|
188 |
req: gr.Request,
|
189 |
) -> Tuple[str, str]:
|
190 |
-
"""
|
191 |
-
Extract a GLB file from the 3D model.
|
192 |
-
|
193 |
-
Args:
|
194 |
-
state (dict): The state of the generated 3D model.
|
195 |
-
mesh_simplify (float): The mesh simplification factor.
|
196 |
-
texture_size (int): The texture resolution.
|
197 |
-
|
198 |
-
Returns:
|
199 |
-
str: The path to the extracted GLB file.
|
200 |
-
"""
|
201 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
202 |
gs, mesh = unpack_state(state)
|
203 |
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
|
@@ -209,15 +153,6 @@ def extract_glb(
|
|
209 |
|
210 |
@spaces.GPU
|
211 |
def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
|
212 |
-
"""
|
213 |
-
Extract a Gaussian file from the 3D model.
|
214 |
-
|
215 |
-
Args:
|
216 |
-
state (dict): The state of the generated 3D model.
|
217 |
-
|
218 |
-
Returns:
|
219 |
-
str: The path to the extracted Gaussian file.
|
220 |
-
"""
|
221 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
222 |
gs, _ = unpack_state(state)
|
223 |
gaussian_path = os.path.join(user_dir, 'sample.ply')
|
@@ -239,44 +174,24 @@ def prepare_multi_example() -> List[Image.Image]:
|
|
239 |
images.append(Image.fromarray(np.concatenate(_images, axis=1)))
|
240 |
return images
|
241 |
|
242 |
-
|
243 |
-
def split_image(image: Image.Image) -> List[Image.Image]:
|
244 |
-
"""
|
245 |
-
Split an image into multiple views.
|
246 |
-
"""
|
247 |
-
image = np.array(image)
|
248 |
-
alpha = image[..., 3]
|
249 |
-
alpha = np.any(alpha>0, axis=0)
|
250 |
-
start_pos = np.where(~alpha[:-1] & alpha[1:])[0].tolist()
|
251 |
-
end_pos = np.where(alpha[:-1] & ~alpha[1:])[0].tolist()
|
252 |
-
images = []
|
253 |
-
for s, e in zip(start_pos, end_pos):
|
254 |
-
images.append(Image.fromarray(image[:, s:e+1]))
|
255 |
-
return [preprocess_image(image) for image in images]
|
256 |
-
|
257 |
-
|
258 |
with gr.Blocks(delete_cache=(600, 600)) as demo:
|
259 |
gr.Markdown("""
|
260 |
## Image to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
|
261 |
-
* Upload an
|
262 |
* If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it.
|
263 |
-
|
264 |
-
✨New: 1) Experimental multi-image support. 2) Gaussian file extraction.
|
265 |
""")
|
266 |
|
267 |
with gr.Row():
|
268 |
with gr.Column():
|
269 |
with gr.Tabs() as input_tabs:
|
270 |
-
with gr.Tab(label="Single Image", id=0) as single_image_input_tab:
|
271 |
-
image_prompt = gr.Image(label="Image Prompt", format="png", image_mode="RGBA", type="pil", height=300)
|
272 |
with gr.Tab(label="Multiple Images", id=1) as multiimage_input_tab:
|
273 |
multiimage_prompt = gr.Gallery(label="Image Prompt", format="png", type="pil", height=300, columns=3)
|
274 |
gr.Markdown("""
|
275 |
-
|
276 |
-
|
277 |
-
*NOTE: this is an experimental algorithm without training a specialized model. It may not produce the best results for all images, especially those having different poses or inconsistent details.*
|
278 |
""")
|
279 |
-
|
280 |
with gr.Accordion(label="Generation Settings", open=False):
|
281 |
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
|
282 |
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
@@ -289,8 +204,7 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
289 |
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
|
290 |
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
|
291 |
multiimage_algo = gr.Radio(["stochastic", "multidiffusion"], label="Multi-image Algorithm", value="stochastic")
|
292 |
-
|
293 |
-
generate_btn = gr.Button("Generate")
|
294 |
|
295 |
with gr.Accordion(label="GLB Extraction Settings", open=False):
|
296 |
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
|
@@ -299,10 +213,11 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
299 |
with gr.Row():
|
300 |
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
|
301 |
extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
|
|
|
302 |
gr.Markdown("""
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
with gr.Column():
|
307 |
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
|
308 |
model_output = LitModel3D(label="Extracted GLB/Gaussian", exposure=10.0, height=300)
|
@@ -311,74 +226,47 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
311 |
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
|
312 |
download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False)
|
313 |
|
314 |
-
is_multiimage = gr.State(False)
|
315 |
output_buf = gr.State()
|
316 |
-
|
317 |
# Example images at the bottom of the page
|
318 |
-
with gr.Row() as
|
319 |
-
examples = gr.Examples(
|
320 |
-
examples=[
|
321 |
-
f'assets/example_image/{image}'
|
322 |
-
for image in os.listdir("assets/example_image")
|
323 |
-
],
|
324 |
-
inputs=[image_prompt],
|
325 |
-
fn=preprocess_image,
|
326 |
-
outputs=[image_prompt],
|
327 |
-
run_on_click=True,
|
328 |
-
examples_per_page=64,
|
329 |
-
)
|
330 |
-
with gr.Row(visible=False) as multiimage_example:
|
331 |
examples_multi = gr.Examples(
|
332 |
examples=prepare_multi_example(),
|
333 |
-
inputs=[
|
334 |
fn=split_image,
|
335 |
outputs=[multiimage_prompt],
|
336 |
run_on_click=True,
|
337 |
examples_per_page=8,
|
338 |
)
|
339 |
-
|
340 |
# Handlers
|
341 |
demo.load(start_session)
|
342 |
demo.unload(end_session)
|
343 |
|
344 |
-
single_image_input_tab.select(
|
345 |
-
lambda: tuple([False, gr.Row.update(visible=True), gr.Row.update(visible=False)]),
|
346 |
-
outputs=[is_multiimage, single_image_example, multiimage_example]
|
347 |
-
)
|
348 |
-
multiimage_input_tab.select(
|
349 |
-
lambda: tuple([True, gr.Row.update(visible=False), gr.Row.update(visible=True)]),
|
350 |
-
outputs=[is_multiimage, single_image_example, multiimage_example]
|
351 |
-
)
|
352 |
-
|
353 |
-
image_prompt.upload(
|
354 |
-
preprocess_image,
|
355 |
-
inputs=[image_prompt],
|
356 |
-
outputs=[image_prompt],
|
357 |
-
)
|
358 |
multiimage_prompt.upload(
|
359 |
preprocess_images,
|
360 |
inputs=[multiimage_prompt],
|
361 |
outputs=[multiimage_prompt],
|
362 |
)
|
363 |
-
|
364 |
generate_btn.click(
|
365 |
get_seed,
|
366 |
inputs=[randomize_seed, seed],
|
367 |
outputs=[seed],
|
368 |
).then(
|
369 |
image_to_3d,
|
370 |
-
inputs=[
|
371 |
outputs=[output_buf, video_output],
|
372 |
).then(
|
373 |
lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),
|
374 |
outputs=[extract_glb_btn, extract_gs_btn],
|
375 |
)
|
376 |
-
|
377 |
video_output.clear(
|
378 |
lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False)]),
|
379 |
outputs=[extract_glb_btn, extract_gs_btn],
|
380 |
)
|
381 |
-
|
382 |
extract_glb_btn.click(
|
383 |
extract_glb,
|
384 |
inputs=[output_buf, mesh_simplify, texture_size],
|
@@ -396,12 +284,11 @@ with gr.Blocks(delete_cache=(600, 600)) as demo:
|
|
396 |
lambda: gr.Button(interactive=True),
|
397 |
outputs=[download_gs],
|
398 |
)
|
399 |
-
|
400 |
model_output.clear(
|
401 |
lambda: gr.Button(interactive=False),
|
402 |
outputs=[download_glb],
|
403 |
)
|
404 |
-
|
405 |
|
406 |
# Launch the Gradio app
|
407 |
if __name__ == "__main__":
|
@@ -411,4 +298,4 @@ if __name__ == "__main__":
|
|
411 |
pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) # Preload rembg
|
412 |
except:
|
413 |
pass
|
414 |
-
demo.launch(show_error=True)
|
|
|
31 |
shutil.rmtree(user_dir)
|
32 |
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
def preprocess_images(images: List[Tuple[Image.Image, str]]) -> List[Image.Image]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
images = [image[0] for image in images]
|
36 |
processed_images = [pipeline.preprocess_image(image) for image in images]
|
37 |
return processed_images
|
|
|
78 |
|
79 |
|
80 |
def get_seed(randomize_seed: bool, seed: int) -> int:
|
|
|
|
|
|
|
81 |
return np.random.randint(0, MAX_SEED) if randomize_seed else seed
|
82 |
|
83 |
|
84 |
@spaces.GPU
|
85 |
def image_to_3d(
|
|
|
86 |
multiimages: List[Tuple[Image.Image, str]],
|
87 |
is_multiimage: bool,
|
88 |
seed: int,
|
|
|
93 |
multiimage_algo: Literal["multidiffusion", "stochastic"],
|
94 |
req: gr.Request,
|
95 |
) -> Tuple[dict, str]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
97 |
if not is_multiimage:
|
98 |
outputs = pipeline.run(
|
|
|
142 |
texture_size: int,
|
143 |
req: gr.Request,
|
144 |
) -> Tuple[str, str]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
146 |
gs, mesh = unpack_state(state)
|
147 |
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
|
|
|
153 |
|
154 |
@spaces.GPU
|
155 |
def extract_gaussian(state: dict, req: gr.Request) -> Tuple[str, str]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
|
157 |
gs, _ = unpack_state(state)
|
158 |
gaussian_path = os.path.join(user_dir, 'sample.ply')
|
|
|
174 |
images.append(Image.fromarray(np.concatenate(_images, axis=1)))
|
175 |
return images
|
176 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
with gr.Blocks(delete_cache=(600, 600)) as demo:
|
178 |
gr.Markdown("""
|
179 |
## Image to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
|
180 |
+
* Upload multiple images of an object from different views and click "Generate" to create a 3D asset.
|
181 |
* If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it.
|
182 |
+
✨New: Experimental multi-image support and Gaussian file extraction.
|
|
|
183 |
""")
|
184 |
|
185 |
with gr.Row():
|
186 |
with gr.Column():
|
187 |
with gr.Tabs() as input_tabs:
|
|
|
|
|
188 |
with gr.Tab(label="Multiple Images", id=1) as multiimage_input_tab:
|
189 |
multiimage_prompt = gr.Gallery(label="Image Prompt", format="png", type="pil", height=300, columns=3)
|
190 |
gr.Markdown("""
|
191 |
+
Input different views of the object in separate images.
|
192 |
+
NOTE: this is an experimental algorithm without training a specialized model. It may not produce the best results for all images, especially those having different poses or inconsistent details.*
|
|
|
193 |
""")
|
194 |
+
|
195 |
with gr.Accordion(label="Generation Settings", open=False):
|
196 |
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
|
197 |
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
|
|
204 |
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
|
205 |
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
|
206 |
multiimage_algo = gr.Radio(["stochastic", "multidiffusion"], label="Multi-image Algorithm", value="stochastic")
|
207 |
+
generate_btn = gr.Button("Generate")
|
|
|
208 |
|
209 |
with gr.Accordion(label="GLB Extraction Settings", open=False):
|
210 |
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
|
|
|
213 |
with gr.Row():
|
214 |
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
|
215 |
extract_gs_btn = gr.Button("Extract Gaussian", interactive=False)
|
216 |
+
|
217 |
gr.Markdown("""
|
218 |
+
NOTE: Gaussian file can be very large (~50MB), it will take a while to display and download.*
|
219 |
+
""")
|
220 |
+
|
221 |
with gr.Column():
|
222 |
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
|
223 |
model_output = LitModel3D(label="Extracted GLB/Gaussian", exposure=10.0, height=300)
|
|
|
226 |
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
|
227 |
download_gs = gr.DownloadButton(label="Download Gaussian", interactive=False)
|
228 |
|
|
|
229 |
output_buf = gr.State()
|
230 |
+
|
231 |
# Example images at the bottom of the page
|
232 |
+
with gr.Row(visible=True) as multiimage_example:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
233 |
examples_multi = gr.Examples(
|
234 |
examples=prepare_multi_example(),
|
235 |
+
inputs=[multiimage_prompt],
|
236 |
fn=split_image,
|
237 |
outputs=[multiimage_prompt],
|
238 |
run_on_click=True,
|
239 |
examples_per_page=8,
|
240 |
)
|
241 |
+
|
242 |
# Handlers
|
243 |
demo.load(start_session)
|
244 |
demo.unload(end_session)
|
245 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
246 |
multiimage_prompt.upload(
|
247 |
preprocess_images,
|
248 |
inputs=[multiimage_prompt],
|
249 |
outputs=[multiimage_prompt],
|
250 |
)
|
251 |
+
|
252 |
generate_btn.click(
|
253 |
get_seed,
|
254 |
inputs=[randomize_seed, seed],
|
255 |
outputs=[seed],
|
256 |
).then(
|
257 |
image_to_3d,
|
258 |
+
inputs=[multiimage_prompt, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps, multiimage_algo],
|
259 |
outputs=[output_buf, video_output],
|
260 |
).then(
|
261 |
lambda: tuple([gr.Button(interactive=True), gr.Button(interactive=True)]),
|
262 |
outputs=[extract_glb_btn, extract_gs_btn],
|
263 |
)
|
264 |
+
|
265 |
video_output.clear(
|
266 |
lambda: tuple([gr.Button(interactive=False), gr.Button(interactive=False)]),
|
267 |
outputs=[extract_glb_btn, extract_gs_btn],
|
268 |
)
|
269 |
+
|
270 |
extract_glb_btn.click(
|
271 |
extract_glb,
|
272 |
inputs=[output_buf, mesh_simplify, texture_size],
|
|
|
284 |
lambda: gr.Button(interactive=True),
|
285 |
outputs=[download_gs],
|
286 |
)
|
287 |
+
|
288 |
model_output.clear(
|
289 |
lambda: gr.Button(interactive=False),
|
290 |
outputs=[download_glb],
|
291 |
)
|
|
|
292 |
|
293 |
# Launch the Gradio app
|
294 |
if __name__ == "__main__":
|
|
|
298 |
pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) # Preload rembg
|
299 |
except:
|
300 |
pass
|
301 |
+
demo.launch(show_error=True)
|