import streamlit as st import pandas as pd # Define two example datasets hospitals = [ {'City': 'New York', 'State': 'NY', 'Beds': 2000}, {'City': 'Los Angeles', 'State': 'CA', 'Beds': 1500}, {'City': 'Chicago', 'State': 'IL', 'Beds': 1200}, {'City': 'Houston', 'State': 'TX', 'Beds': 1800}, {'City': 'Phoenix', 'State': 'AZ', 'Beds': 1300} ] populations = [ {'State': 'NY', 'Population': 19530000, 'SquareMiles': 54555}, {'State': 'CA', 'Population': 39540000, 'SquareMiles': 163696}, {'State': 'IL', 'Population': 12670000, 'SquareMiles': 57914}, {'State': 'TX', 'Population': 29150000, 'SquareMiles': 268596}, {'State': 'AZ', 'Population': 7279000, 'SquareMiles': 113990} ] # Merge the datasets based on the state column df = pd.merge(pd.DataFrame(hospitals), pd.DataFrame(populations), on='State') # Filter the merged dataset to include only hospitals with over 1000 beds df = df[df['Beds'] > 1000] # Calculate the number of beds per square mile for each state df['BedsPerSquareMile'] = df['Beds'] / df['SquareMiles'] # Display the resulting dataframe in Streamlit st.write(df)