File size: 7,449 Bytes
c109682
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import os
import torch
import numpy as np

import spacy
from spacy.tokens import Span
from spacy.attrs import ENT_IOB, ENT_TYPE
from spacy import displacy

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from transformers import pipeline


if torch.cuda.is_available():
    device = 'cuda'
elif torch.backends.mps.is_available():
    device = 'mps'
else:
    device = 'cpu'
print(f"inference.py -> DEVICE : {device}")



summarizer = pipeline(
    "summarization",
    "pszemraj/long-t5-tglobal-base-16384-book-summary",
    device=0 if torch.cuda.is_available() else -1,
)
long_text = "Here is a lot of text I don't want to read. Replace me"



# [ Practice ]
# result = summarizer(long_text)
# print(result[0]["summary_text"])



tokenizer = AutoTokenizer.from_pretrained("allenai/tk-instruct-base-def-pos")
model = AutoModelForSeq2SeqLM.from_pretrained("allenai/tk-instruct-base-def-pos")
# k = pipeline("text2text-generation", model="allenai/tk-instruct-3b-def")



# [ Practice ]
# input_ids = tokenizer.encode("Definition: return the currency of the given country. Now complete the following example - Input: India. Output:", 
#         return_tensors="pt")
# output = model.generate(input_ids, max_length=10)
# output = tokenizer.decode(output[0], skip_special_tokens=True)   # model should output 'Indian Rupee'
# print(output)

# input_ids = tokenizer.encode("Definition: negate the following sentence. Input: John went to school. Output:", 
#         return_tensors="pt")
# output = model.generate(input_ids, max_length=10)
# output = tokenizer.decode(output[0], skip_special_tokens=True)   # model should output 'John did not go to shool.'
# print(output)



# text = "Alphabet's results also missed forecasts on revenue and earnings per share, as advertising declined year-over-year. The numbers come after the company laid off about 12,000 employees in January, a move CEO Sundar Pichai blamed on Alphabet overhiring during the pandemic boom. \
# Q: Why did Alphabet's stock go down?"
# input_ids = tokenizer.encode(text, return_tensors="pt")
# output = model.generate(input_ids, max_length=10)
# output = tokenizer.decode(output[0], skip_special_tokens=True)   # model should output 'John did not go to shool.'
# print(output)



def Tk_instruct(text, questions):
    # Summary ν–ˆλŠ”μ§€ μ•ˆν–ˆλŠ”μ§€
    summarized = False
    summarized_data = ""

    text = text + "\n\nQ: " + questions
    print("Model's input : ", text)


    if len(text) >= 512:
        print(f"===================== Apply Summarization : length = {len(text)} =====================")
        text = summarizer(text)[0]["summary_text"]
        print(f"===================== Summary text : {text} =====================")
        summarized = True
        summarized_data = text



    input_ids = tokenizer.encode(text, return_tensors="pt")
    output = model.generate(input_ids, max_length=10)
    output = tokenizer.decode(output[0], skip_special_tokens=True)


    if summarized:
        output = "Summary News : " + summarized_data + "\n\n" + "Answer : " + output


    return output




































# NER μ—°μŠ΅
def practice1():
    print(f"======================={ 1. }=======================")
    nlp = spacy.load("en_core_web_sm")
    doc = nlp("Apple is looking at buying U.K. startup for $1 billion")

    print(doc)
    print(doc.ents)

    for ent in doc.ents:
        print(ent.text, ent.start_char, ent.end_char, ent.label_)


    title = "2. Accessing entity annotations and labels"
    print(f"======================={ title }=======================")
    nlp = spacy.load("en_core_web_sm")
    doc = nlp("San Francisco considers banning sidewalk delivery robots")
    
    # document level
    ents = [(e.text, e.start_char, e.end_char, e.label_) for e in doc.ents]
    print(ents)

    # I - Token is inside an entity.
    # O - Token is outside an entity.
    # B - Token is the beginning of an entity.

    # token level
    ent_san = [doc[0].text, doc[0].ent_iob_, doc[0].ent_type_]
    ent_francisco = [doc[1].text, doc[1].ent_iob_, doc[1].ent_type_]
    print(ent_san)
    print(ent_francisco)



    title = "3. Setting entity annotations"
    print(f"======================={ title }=======================")
    nlp = spacy.load("en_core_web_sm")
    doc = nlp("fb is hiring a new vice president of global policy")
    ents = [(e.text, e.start_char, e.end_char, e.label_) for e in doc.ents]
    print('Before', ents)
    # The model didn't recognize "fb" as an entity :(

    # Create a span for the new entity
    fb_ent = Span(doc, 0, 1, label="ORG"); print(fb_ent)
    orig_ents = list(doc.ents)

    # Option 1: Modify the provided entity spans, leaving the rest unmodified
    doc.set_ents([fb_ent], default="unmodified")

    # Option 2: Assign a complete list of ents to doc.ents
    doc.ents = orig_ents + [fb_ent]

    ents = [(e.text, e.start, e.end, e.label_) for e in doc.ents]
    print('After', ents)
    # [('fb', 0, 1, 'ORG')]



    title = "4. Setting entity annotations from array"
    print(f"======================={ title }=======================")
    nlp = spacy.load("en_core_web_sm")
    doc = nlp.make_doc("London is a big city in the United Kingdom.")
    print("Before", doc.ents) # []

    header = [ENT_IOB, ENT_TYPE]; print(header)
    attr_array = np.zeros((len(doc), len(header)), dtype="uint64"); print(attr_array)
    attr_array[0, 0] = 3 # B
    attr_array[0, 1] = doc.vocab.strings["GPE"]
    doc.from_array(header, attr_array); print(attr_array)
    print("After", doc.ents) # [London]



    title = "5. Visualizing named entities"
    print(f"======================={ title }=======================")
    text = "When Sebastian Thrun started working on self-driving cars at Google in 2007, few people outside of the company took him seriously."

    nlp = spacy.load("en_core_web_sm")
    doc = nlp(text)
    # displacy.serve(doc, style="ent")
    displacy.serve(doc, port=3, style="ent")













############################################################################

# news_analysis.html + ner.html => news.html λ§Œλ“œλŠ” μ—°μŠ΅


from flask import Flask, jsonify, request, render_template
from bs4 import BeautifulSoup
app = Flask(__name__)

@app.route('/')
def practice2():
    title = "1. Rendering HTML"
    print(f"======================={ title }=======================")
    nlp = spacy.load("en_core_web_sm")
    doc1 = nlp("This is a sentence.")
    doc2 = nlp("This is another sentence.")
    ner_html = displacy.render([doc1, doc2], style="dep", page=True)
    
    print("ner_html : ", ner_html)
    
    
    # NER html code
    soup = BeautifulSoup(ner_html, 'html.parser')
    ner_figure_list = soup.select('figure')
    ner_html = ""
    for i in range(len(ner_figure_list)):
        ner_html = ner_html + str(ner_figure_list[i])



    f = open("./templates/news_analysis.html", 'r')
    f2 = open("./modules/templates/example.html", 'w')# read and write

    html = f.read()
    idx = html.find("ner-box") + 9 # NER html μ‚½μž…λ˜λŠ” λΆ€λΆ„

    html = html[:idx] + ner_html + html[idx:]

    f2.seek(0) # openν•˜λ©΄ 
    f2.write(html)
    # f2.seek(0)
    # print(f2.read())
    
    # from IPython import embed; embed()

    # f2.write(f.read())
    # f2.seek(0) # κ°€μž₯ μ•žμœΌλ‘œ

    return render_template("example.html")




    



if __name__ == "__main__":
    # app.run(host='0.0.0.0', port='777')
    
    practice1()