{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/home/mks/.local/lib/python3.10/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", " from .autonotebook import tqdm as notebook_tqdm\n" ] } ], "source": [ "%load_ext gradio" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Running on local URL: http://127.0.0.1:7860\n" ] }, { "data": { "text/html": [ "
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "%%blocks \n", "\n", "import gradio as gr\n", "\n", "gr.Markdown(\"# Greetings from Gradio!\")\n", "inp = gr.Textbox(placeholder=\"What is your name?\")\n", "out = gr.Textbox()\n", "\n", "inp.change(fn=lambda x: f\"Welcome, {x}!\", \n", " inputs=inp, \n", " outputs=out)" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/home/mks/.local/lib/python3.10/site-packages/gradio/ipython_ext.py:18: UserWarning: Usage of gradio.Interface with %%blocks may result in errors.\n", " warnings.warn(\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Running on local URL: http://127.0.0.1:7861\n", "\n", "To create a public link, set `share=True` in `launch()`.\n" ] }, { "data": { "text/html": [ "
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "Running on local URL: http://127.0.0.1:7860\n" ] }, { "data": { "text/html": [ "
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "%%blocks \n", "def greet(name):\n", " return \"Hello \" + name + \"!\"\n", "\n", "demo = gr.Interface(fn=greet, inputs=\"text\", outputs=\"text\")\n", " \n", "demo.launch() " ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Running on local URL: http://127.0.0.1:7863\n", "\n", "To create a public link, set `share=True` in `launch()`.\n" ] }, { "data": { "text/html": [ "
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import gradio as gr\n", "\n", "def greet(name):\n", " return \"Hello \" + name + \"!\"\n", "\n", "demo = gr.Interface(\n", " fn=greet,\n", " inputs=gr.Textbox(lines=4, placeholder=\"Name Here...\"),\n", " outputs=\"text\",\n", ")\n", "demo.launch()" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Running on local URL: http://127.0.0.1:7869\n", "\n", "To create a public link, set `share=True` in `launch()`.\n" ] }, { "data": { "text/html": [ "
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import gradio as gr\n", "\n", "def greet(yourname, is_morning, temperature):\n", " salutation = \"Good morning\" if is_morning else \"Good evening\"\n", " greeting = f\"{salutation} {name}. It is {temperature} degrees Fahrenheit today.\"\n", " celsius = (temperature - 32) * 5 / 9\n", " return greeting, round(celsius, 2)\n", "\n", "demo = gr.Interface(\n", " fn=greet,\n", " inputs=[\"text\", \"checkbox\", gr.Slider(-50, 100)],\n", " outputs=[\"text\", \"number\"],\n", ")\n", "demo.launch()" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Running on local URL: http://127.0.0.1:7870\n", "\n", "To create a public link, set `share=True` in `launch()`.\n" ] }, { "data": { "text/html": [ "
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import numpy as np\n", "import gradio as gr\n", "\n", "def sepia(input_img):\n", " sepia_filter = np.array([\n", " [0.393, 0.769, 0.189], \n", " [0.349, 0.686, 0.168], \n", " [0.272, 0.534, 0.131]\n", " ])\n", " sepia_img = input_img.dot(sepia_filter.T)\n", " sepia_img /= sepia_img.max()\n", " return sepia_img\n", "\n", "demo = gr.Interface(sepia, gr.Image(shape=(200, 200)), \"image\")\n", "demo.launch()" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Running on local URL: http://127.0.0.1:7871\n", "\n", "To create a public link, set `share=True` in `launch()`.\n" ] }, { "data": { "text/html": [ "
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import gradio as gr\n", "\n", "def greet(name):\n", " return \"Hello \" + name + \"!\"\n", "\n", "with gr.Blocks() as demo:\n", " name = gr.Textbox(label=\"Name\")\n", " output = gr.Textbox(label=\"Output Box\")\n", " greet_btn = gr.Button(\"Greet\")\n", " greet_btn.click(fn=greet, inputs=name, outputs=output, api_name=\"greet\")\n", "\n", "demo.launch()" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Running on local URL: http://127.0.0.1:7872\n", "\n", "To create a public link, set `share=True` in `launch()`.\n" ] }, { "data": { "text/html": [ "
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import numpy as np\n", "import gradio as gr\n", "\n", "\n", "def flip_text(x):\n", " return x[::-1]\n", "\n", "\n", "def flip_image(x):\n", " return np.fliplr(x)\n", "\n", "\n", "with gr.Blocks() as demo:\n", " gr.Markdown(\"Flip text or image files using this demo.\")\n", " with gr.Tab(\"Flip Text\"):\n", " text_input = gr.Textbox()\n", " text_output = gr.Textbox()\n", " text_button = gr.Button(\"Flip\")\n", " with gr.Tab(\"Flip Image\"):\n", " with gr.Row():\n", " image_input = gr.Image()\n", " image_output = gr.Image()\n", " image_button = gr.Button(\"Flip\")\n", "\n", " with gr.Accordion(\"Open for More!\"):\n", " gr.Markdown(\"Look at me...\")\n", "\n", " text_button.click(flip_text, inputs=text_input, outputs=text_output)\n", " image_button.click(flip_image, inputs=image_input, outputs=image_output)\n", "\n", "demo.launch()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "! pip install nbconvert -U" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[NbConvertApp] Converting notebook app.ipynb to script\n", "[NbConvertApp] Writing 2888 bytes to app.py\n" ] } ], "source": [ "!jupyter nbconvert --to script app.ipynb" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.6" }, "orig_nbformat": 4 }, "nbformat": 4, "nbformat_minor": 2 }