import streamlit as st from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline import requests import pandas as pd url = 'https://elharchaouiresume.s3.eu-west-3.amazonaws.com/resume' response = requests.get(url) resume_context=None if response.status_code == 200: resume_context = response.text else: load_error=f"Conext loading Error: {response.status_code}" # with open('resume') as f: # resume_context = f.read() model_name = "deepset/tinyroberta-squad2" # a) Get predictions nlp = pipeline('question-answering', model=model_name, tokenizer=model_name) # Streamlit app layout st.title("Ask me any question about my career") st.write("This app uses a pre-trained model from Hugging Face to perform question answering, about my career as context, on user input.") # User input user_input = st.text_area("Enter some a question :", value="", height=150, max_chars=500) if user_input: if resume_context: print(resume_context) QA_input = { 'question': user_input, 'context': resume_context } # Perform sentiment analysis on the user input result = nlp(QA_input) # Display the sentiment analysis result answer = result["answer"] else: answer="It seems there is a problem loading context, here is more details :"+load_error st.write(f"Response: {answer}") else: st.write("Please enter some text to analyze.") # Display a table with example inputs st.write("Example inputs:") example_inputs = [ {"Inputs example": "What programming languages you have experience in?"}, {"Inputs example": "What cloud platforms are you familiar with?"}, {"Inputs example": "What are your skills in machine learning?"}, {"Inputs example": "The future of technology is..."}, ] example_df = pd.DataFrame(example_inputs) st.table(example_df)