File size: 1,124 Bytes
46d9645
0f14a07
26ba5f9
 
 
 
 
 
 
46d9645
 
26ba5f9
 
 
46d9645
 
 
 
 
f9b3ca4
26ba5f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import streamlit as st
import torch
from langchain.document_loaders import PyPDFLoader

from langchain.text_splitter import SentenceTransformersTokenTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings, SentenceTransformerEmbeddings
from langchain.vectorstores import FAISS



def read_pdf(file):
    loader = PyPDFLoader(file)
    raw_documents = loader.load()
    return raw_documents

st.title('PDF Text Extractor')

uploaded_file = st.file_uploader("Choose a PDF file", type="pdf")
if uploaded_file is not None:
    raw_documents = read_pdf(uploaded_file)


splitter = SentenceTransformersTokenTextSplitter(model_name='dangvantuan/sentence-camembert-large',
chunk_overlap=50
)

documents = splitter.split_documents(raw_documents)


embeddings_fun = HuggingFaceEmbeddings(model_name='dangvantuan/sentence-camembert-large')

# embeddings_text = embeddings_fun.embed_documents(documents)

faiss_db = FAISS.from_documents(documents, embeddings_fun)

query = st.text_input("Entrer une question")
docs = faiss_db.similarity_search(query)

st.text('La reponse à votre question:')
st.write(docs[0].page_content)