Spaces:
Sleeping
Sleeping
File size: 844 Bytes
bc6af51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 |
import streamlit as st
from transformers import pipeline
# Load the sentiment analysis pipeline from Hugging Face
nlp = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
# Streamlit app layout
st.title("Simple Sentiment Analysis")
st.write("This app uses a pre-trained model from Hugging Face to perform sentiment analysis on user input.")
# User input
user_input = st.text_area("Enter some text to analyze:", value="", height=150, max_chars=500)
if user_input:
# Perform sentiment analysis on the user input
result = nlp(user_input)
# Display the sentiment analysis result
sentiment = result[0]["label"]
confidence = result[0]["score"]
st.write(f"Sentiment: {sentiment}")
st.write(f"Confidence: {confidence:.2f}")
else:
st.write("Please enter some text to analyze.")
|