File size: 3,312 Bytes
8f69832
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import os
import time
import math
import random

from io import BytesIO
import numpy as np
from cairosvg import svg2png
import cv2

import filetype
from filetype.match import image_matchers

import imgaug as ia
from imgaug import augmenters as iaa
from imgaug.augmentables.batches import UnnormalizedBatch

from common import defaults, mkdir
import imtool
import pipelines

BATCH_SIZE = 16

mkdir.make_dirs([defaults.AUGMENTED_IMAGES_PATH, defaults.AUGMENTED_LABELS_PATH])

logo_images = []
background_images = [d for d in os.scandir(defaults.IMAGES_PATH)]

stats = {
    'failed': 0,
    'ok': 0
}

for d in os.scandir(defaults.LOGOS_DATA_PATH):
    img = None
    if not d.is_file():
        stats['failed'] += 1
        continue

    try:
        if filetype.match(d.path, matchers=image_matchers):
            img = cv2.imread(d.path, cv2.IMREAD_UNCHANGED)
        else:
            png = svg2png(url=d.path)
            img = cv2.imdecode(np.asarray(bytearray(png), dtype=np.uint8), cv2.IMREAD_UNCHANGED)
        stats['ok'] += 1

        (h, w, c) = img.shape
        if c == 3:
            img = imtool.add_alpha(img)

        if img.ndim < 3:
            print(f'very bad dim: {img.ndim}')

        img = imtool.remove_white(img)
        (h, w, c) = img.shape

        assert(w > 10)
        assert(h > 10)

        logo_images.append(img)
    except Exception as e:
        stats['failed'] += 1
        print(f'error loading: {d.path}: {e}')

print(stats)
batches = [UnnormalizedBatch(images=logo_images[i:i+BATCH_SIZE])
           for i in range(math.floor(len(logo_images)/BATCH_SIZE))]

# We use a single, very fast augmenter here to show that batches
# are only loaded once there is space again in the buffer.
pipeline = pipelines.HUGE

def create_generator(lst):
    for b in lst:
        print(f"Loading next unaugmented batch...")
        yield b

batches_generator = create_generator(batches)

with pipeline.pool(processes=-1, seed=1) as pool:
    batches_aug = pool.imap_batches(batches_generator, output_buffer_size=5)

    print(f"Requesting next augmented batch...")
    for i, batch_aug in enumerate(batches_aug):
        idx = list(range(len(batch_aug.images_aug)))
        random.shuffle(idx)
        for j, d in enumerate(background_images):
            img = imtool.remove_white(cv2.imread(d.path))
            basename = d.name.replace('.png', '') + f'.{i}.{j}'

            anotations = []
            for k in range(math.floor(len(batch_aug.images_aug)/3)):
                logo = batch_aug.images_aug[(j+k)%len(batch_aug.images_aug)]
                try:
                    img, bb, (w, h) = imtool.mix(img, logo, random.random(), random.random())
                    anotations.append(f'0 {bb.x/w} {bb.y/h} {bb.w/w} {bb.h/h}')
                except AssertionError:
                    print(f'couldnt process {i}, {j}')

            try:
                cv2.imwrite(f'{defaults.AUGMENTED_IMAGES_PATH}/{basename}.png', img)
                label_path = f"{defaults.AUGMENTED_LABELS_PATH}/{basename}.txt"
                with open(label_path, 'a') as f:
                    f.write('\n'.join(anotations))
            except Exception:
                print(f'couldnt write image {basename}')

        if i < len(batches)-1:
            print("Requesting next augmented batch...")