File size: 12,987 Bytes
e17bf8a
 
 
 
 
 
 
 
 
 
 
 
 
8687f86
e17bf8a
 
 
 
bae2e43
e17bf8a
 
 
 
 
 
 
 
 
 
 
 
 
bae2e43
e17bf8a
 
 
 
 
91701f5
 
e7fd01f
91701f5
 
e7fd01f
 
 
e17bf8a
e0cfe13
 
1174165
 
 
 
 
e17bf8a
8687f86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e17bf8a
91701f5
e17bf8a
 
 
 
 
 
 
8687f86
 
e17bf8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bae2e43
e17bf8a
bae2e43
 
 
e17bf8a
 
 
 
 
 
 
8687f86
e17bf8a
 
 
 
 
8dd7b5f
bae2e43
 
8dd7b5f
 
 
bae2e43
e17bf8a
 
 
 
 
 
 
 
 
 
 
 
 
 
bae2e43
 
 
e17bf8a
 
 
8dd7b5f
 
 
e17bf8a
 
 
 
 
 
 
 
 
91701f5
e17bf8a
 
 
 
8687f86
e17bf8a
 
 
 
 
8dd7b5f
bae2e43
 
8dd7b5f
 
 
bae2e43
e17bf8a
 
 
 
 
 
 
 
 
 
 
 
 
91701f5
 
 
e17bf8a
91701f5
e17bf8a
 
8dd7b5f
 
 
e17bf8a
 
 
91701f5
e17bf8a
 
 
bae2e43
e7b07f9
bae2e43
 
 
 
 
 
 
 
 
 
 
e17bf8a
 
 
 
 
 
 
 
 
 
 
 
 
4d990d2
 
 
 
bae2e43
4d990d2
e17bf8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d990d2
e17bf8a
 
4d990d2
e17bf8a
 
 
 
 
 
 
 
 
 
 
 
 
4d990d2
e17bf8a
4d990d2
e17bf8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91701f5
 
 
 
 
 
 
 
 
 
e17bf8a
 
 
 
 
 
 
 
 
 
91701f5
 
 
 
 
e17bf8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91701f5
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
from openai import OpenAI
import streamlit as st
import streamlit.components.v1 as components
import datetime


## Firestore ??
import os
import sys
import inspect
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
parentdir = os.path.dirname(currentdir)
sys.path.append(parentdir)


## ----------------------------------------------------------------
## LLM Part
import openai
from langchain_openai import ChatOpenAI, OpenAI, OpenAIEmbeddings
import tiktoken
from langchain.prompts.few_shot import FewShotPromptTemplate
from langchain.prompts.prompt import PromptTemplate
from operator import itemgetter
from langchain.schema import StrOutputParser
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough

import langchain_community.embeddings.huggingface
from langchain_community.embeddings.huggingface import HuggingFaceBgeEmbeddings
from langchain_community.vectorstores import FAISS

from langchain.chains import LLMChain
from langchain.chains.conversation.memory import ConversationBufferWindowMemory #, ConversationBufferMemory, ConversationSummaryMemory, ConversationSummaryBufferMemory

import os, dotenv
from dotenv import load_dotenv
load_dotenv()

if not os.path.isdir("./.streamlit"):
    os.mkdir("./.streamlit")
    print('made streamlit folder')
if not os.path.isfile("./.streamlit/secrets.toml"):
    with open("./.streamlit/secrets.toml", "w") as f:
        f.write(os.environ.get("STREAMLIT_SECRETS"))
    print('made new file')
    

import db_firestore as db

## Load from streamlit!!
os.environ["HF_TOKEN"] = os.environ.get("HF_TOKEN") or st.secrets["HF_TOKEN"]
os.environ["OPENAI_API_KEY"] = os.environ.get("OPENAI_API_KEY") or st.secrets["OPENAI_API_KEY"]
os.environ["FIREBASE_CREDENTIAL"] = os.environ.get("FIREBASE_CREDENTIAL") or st.secrets["FIREBASE_CREDENTIAL"]



st.title("UAT for PatientLLM and GraderLLM")

## Hardcode indexes for now, 
indexes = """Bleeding
ChestPain
Dysphagia
Headache
ShortnessOfBreath
Vomiting
Weakness
Weakness2""".split("\n")

if "selected_index" not in st.session_state:
    st.session_state.selected_index = 3
    
if "index_selectbox" not in st.session_state:
    st.session_state.index_selectbox = "Headache"

index_selectbox = st.selectbox("Select index",indexes, index=int(st.session_state.selected_index))

if index_selectbox != indexes[st.session_state.selected_index]:
    st.session_state.selected_index = indexes.index(index_selectbox)
    st.session_state.index_selectbox = index_selectbox
    del st.session_state["store"]
    del st.session_state["store2"]
    del st.session_state["retriever"]
    del st.session_state["retriever2"]
    del st.session_state["chain"]
    del st.session_state["chain2"]



if "openai_model" not in st.session_state:
    st.session_state["openai_model"] = "gpt-3.5-turbo-1106"

if "messages_1" not in st.session_state:
    st.session_state.messages_1 = []

if "messages_2" not in st.session_state:
    st.session_state.messages_2 = []

# if "start_time" not in st.session_state:
#     st.session_state.start_time = None

if "active_chat" not in st.session_state:
    st.session_state.active_chat = 1

model_name = "bge-large-en-v1.5"
model_kwargs = {"device": "cpu"}
# model_kwargs = {"device": "cuda"}
encode_kwargs = {"normalize_embeddings": True}
if "embeddings" not in st.session_state:
    st.session_state.embeddings = HuggingFaceBgeEmbeddings(
        # model_name=model_name, 
        model_kwargs = model_kwargs,
        encode_kwargs = encode_kwargs)
embeddings = st.session_state.embeddings
if "llm" not in st.session_state:
    st.session_state.llm = ChatOpenAI(model_name="gpt-3.5-turbo-1106", temperature=0)
llm = st.session_state.llm
if "llm_i" not in st.session_state:
    st.session_state.llm_i = OpenAI(model_name="gpt-3.5-turbo-instruct", temperature=0)
llm_i = st.session_state.llm_i
if "llm_gpt4" not in st.session_state:
    st.session_state.llm_gpt4 = ChatOpenAI(model_name="gpt-4-1106-preview", temperature=0)
llm_gpt4 = st.session_state.llm_gpt4

## ------------------------------------------------------------------------------------------------
## Patient part

index_name = f"indexes/{st.session_state.index_selectbox}/QA"

if "store" not in st.session_state:
    st.session_state.store = db.get_store(index_name, embeddings=embeddings)
store = st.session_state.store

if "TEMPLATE" not in st.session_state:
    with open('templates/patient.txt', 'r') as file: 
        TEMPLATE = file.read()
    st.session_state.TEMPLATE = TEMPLATE

with st.expander("Patient Prompt"):
    TEMPLATE = st.text_area("Patient Prompt", value=st.session_state.TEMPLATE)

prompt = PromptTemplate(
    input_variables = ["question", "context"],
    template = TEMPLATE
)
if "retriever" not in st.session_state:
    st.session_state.retriever = store.as_retriever(search_type="similarity", search_kwargs={"k":2})
retriever = st.session_state.retriever

def format_docs(docs):
    return "\n--------------------\n".join(doc.page_content for doc in docs)


if "memory" not in st.session_state:
    st.session_state.memory = ConversationBufferWindowMemory(
        llm=llm, memory_key="chat_history", input_key="question", 
        k=5, human_prefix="student", ai_prefix="patient",)
memory = st.session_state.memory


if ("chain" not in st.session_state
    or 
    st.session_state.TEMPLATE != TEMPLATE):
    st.session_state.chain = (
    {
        "context": retriever | format_docs, 
        "question": RunnablePassthrough()
        } | 
    LLMChain(llm=llm, prompt=prompt, memory=memory, verbose=False)
)
chain = st.session_state.chain

sp_mapper = {"human":"student","ai":"patient", "user":"student","assistant":"patient"}

## ------------------------------------------------------------------------------------------------
## ------------------------------------------------------------------------------------------------
## Grader part
index_name = f"indexes/{st.session_state.index_selectbox}/Rubric"

if "store2" not in st.session_state:
    st.session_state.store2 = db.get_store(index_name, embeddings=embeddings)
store2 = st.session_state.store2

if "TEMPLATE2" not in st.session_state:
    with open('templates/grader.txt', 'r') as file: 
        TEMPLATE2 = file.read()
    st.session_state.TEMPLATE2 = TEMPLATE2

with st.expander("Grader Prompt"):
    TEMPLATE2 = st.text_area("Grader Prompt", value=st.session_state.TEMPLATE2)

prompt2 = PromptTemplate(
    input_variables = ["question", "context", "history"],
    template = TEMPLATE2
)
if "retriever2" not in st.session_state:
    st.session_state.retriever2 = store2.as_retriever(search_type="similarity", search_kwargs={"k":2})
retriever2 = st.session_state.retriever2

def format_docs(docs):
    return "\n--------------------\n".join(doc.page_content for doc in docs)


# fake_history = '\n'.join([(sp_mapper.get(i.type, i.type) + ": "+ i.content) for i in memory.chat_memory.messages])
fake_history = '\n'.join([(sp_mapper.get(i['role'], i['role']) + ": "+ i['content']) for i in st.session_state.messages_1])
st.write(fake_history)

def y(_): 
    return fake_history

if ("chain2" not in st.session_state
    or 
    st.session_state.TEMPLATE2 != TEMPLATE2):
    st.session_state.chain2 = (
    {
        "context": retriever | format_docs, 
        "history": y,
        "question": RunnablePassthrough(),
        } | 

        # LLMChain(llm=llm_i, prompt=prompt2, verbose=False ) #|
        LLMChain(llm=llm_gpt4, prompt=prompt2, verbose=False ) #|
        | {
            "json": itemgetter("text"),
            "text": (
                LLMChain(
                    llm=llm, 
                    prompt=PromptTemplate(
                        input_variables=["text"],
                        template="Interpret the following JSON of the student's grades, and do a write-up for each section.\n\n```json\n{text}\n```"),
                        verbose=False)
                )
    }
)
chain2 = st.session_state.chain2

## ------------------------------------------------------------------------------------------------
## ------------------------------------------------------------------------------------------------
## Streamlit now

# from dotenv import load_dotenv
# import os
# load_dotenv()
# key = os.environ.get("OPENAI_API_KEY")
# client = OpenAI(api_key=key)


if st.button("Clear History and Memory", type="primary"):
    st.session_state.messages_1 = []
    st.session_state.messages_2 = []
    st.session_state.memory = ConversationBufferWindowMemory(llm=llm, memory_key="chat_history", input_key="question" )
    memory = st.session_state.memory

## Testing HTML
# html_string = """
# <canvas></canvas>


# <script>
#     canvas = document.querySelector('canvas');
#     canvas.width = 1024;
#     canvas.height = 576;
#     console.log(canvas);

#     const c = canvas.getContext('2d');
#     c.fillStyle = "green";
#     c.fillRect(0,0,canvas.width,canvas.height);

#     const img = new Image();
#     img.src = "./tksfordumtrive.png";
#     c.drawImage(img,  10, 10);
# </script>

# <style>
#     body {
#         margin: 0;
#     }
# </style>
# """
# components.html(html_string,
#                 width=1280,
#                 height=640)


st.write("Timer has been removed, switch with this button")

if st.button(f"Switch to {'PATIENT' if st.session_state.active_chat==2 else 'GRADER'}"+".... Buggy button, please double click"):
    st.session_state.active_chat = 3 - st.session_state.active_chat

# st.write("Currently in " + ('PATIENT' if st.session_state.active_chat==2 else 'GRADER'))

# Create two columns for the two chat interfaces
col1, col2 = st.columns(2)

# First chat interface
with col1:
    st.subheader("Student LLM")
    for message in st.session_state.messages_1:
        with st.chat_message(message["role"]):
            st.markdown(message["content"])

# Second chat interface
with col2:
    # st.write("pls dun spam this, its tons of tokens cos chat history")
    st.subheader("Grader LLM")
    st.write("grader takes a while to load... please be patient")
    for message in st.session_state.messages_2:
        with st.chat_message(message["role"]):
            st.markdown(message["content"])

# Timer and Input
# time_left = None
# if st.session_state.start_time:
#     time_elapsed = datetime.datetime.now() - st.session_state.start_time
#     time_left = datetime.timedelta(minutes=10) - time_elapsed
#     st.write(f"Time left: {time_left}")

# if time_left is None or time_left > datetime.timedelta(0):
#     # Chat 1 is active
#     prompt = st.text_input("Enter your message for Chat 1:")
#     active_chat = 1
#     messages = st.session_state.messages_1
# elif time_left and time_left <= datetime.timedelta(0):
#     # Chat 2 is active
#     prompt = st.text_input("Enter your message for Chat 2:")
#     active_chat = 2
#     messages = st.session_state.messages_2

if st.session_state.active_chat==1:
    text_prompt = st.text_input("Enter your message for PATIENT")
    messages = st.session_state.messages_1
else:
    text_prompt = st.text_input("Enter your message for GRADER")
    messages = st.session_state.messages_2


from langchain.callbacks.manager import tracing_v2_enabled
from uuid import uuid4
import os

os.environ['LANGCHAIN_TRACING_V2']='true'
os.environ['LANGCHAIN_ENDPOINT']='https://api.smith.langchain.com'
os.environ['LANGCHAIN_API_KEY']='ls__4ad767c45b844e6a8d790e12f556d3ca'
os.environ['LANGCHAIN_PROJECT']='streamlit'


if text_prompt:
    messages.append({"role": "user", "content": text_prompt})
    
    with (col1 if st.session_state.active_chat == 1 else col2):
        with st.chat_message("user"):
            st.markdown(text_prompt)
    
    with (col1 if st.session_state.active_chat == 1 else col2):
        with st.chat_message("assistant"):
            message_placeholder = st.empty()
            with tracing_v2_enabled(project_name = "streamlit"):
                if st.session_state.active_chat==1:
                    full_response = chain.invoke(text_prompt).get("text")
                else:
                    full_response = chain2.invoke(text_prompt).get("text").get("text")
            message_placeholder.markdown(full_response)
            messages.append({"role": "assistant", "content": full_response})


# import streamlit as st
# import time
# def count_down(ts):
#     with st.empty():
#         while ts:
#             mins, secs = divmod(ts, 60)
#             time_now = '{:02d}:{:02d}'.format(mins, secs)
#             st.header(f"{time_now}")
#             time.sleep(1)
#             ts -= 1
# st.write("Time Up!")
# def main():
#     st.title("Pomodoro")
#     time_minutes = st.number_input('Enter the time in minutes ', min_value=1, value=25)
#     time_in_seconds = time_minutes * 60
#     if st.button("START"):
#             count_down(int(time_in_seconds))
# if __name__ == '__main__':
#     main()
            
st.write('fake history is:')
st.write(y(""))
st.write('done')