Spaces:
Runtime error
Runtime error
File size: 12,987 Bytes
e17bf8a 8687f86 e17bf8a bae2e43 e17bf8a bae2e43 e17bf8a 91701f5 e7fd01f 91701f5 e7fd01f e17bf8a e0cfe13 1174165 e17bf8a 8687f86 e17bf8a 91701f5 e17bf8a 8687f86 e17bf8a bae2e43 e17bf8a bae2e43 e17bf8a 8687f86 e17bf8a 8dd7b5f bae2e43 8dd7b5f bae2e43 e17bf8a bae2e43 e17bf8a 8dd7b5f e17bf8a 91701f5 e17bf8a 8687f86 e17bf8a 8dd7b5f bae2e43 8dd7b5f bae2e43 e17bf8a 91701f5 e17bf8a 91701f5 e17bf8a 8dd7b5f e17bf8a 91701f5 e17bf8a bae2e43 e7b07f9 bae2e43 e17bf8a 4d990d2 bae2e43 4d990d2 e17bf8a 4d990d2 e17bf8a 4d990d2 e17bf8a 4d990d2 e17bf8a 4d990d2 e17bf8a 91701f5 e17bf8a 91701f5 e17bf8a 91701f5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 |
from openai import OpenAI
import streamlit as st
import streamlit.components.v1 as components
import datetime
## Firestore ??
import os
import sys
import inspect
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
parentdir = os.path.dirname(currentdir)
sys.path.append(parentdir)
## ----------------------------------------------------------------
## LLM Part
import openai
from langchain_openai import ChatOpenAI, OpenAI, OpenAIEmbeddings
import tiktoken
from langchain.prompts.few_shot import FewShotPromptTemplate
from langchain.prompts.prompt import PromptTemplate
from operator import itemgetter
from langchain.schema import StrOutputParser
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
import langchain_community.embeddings.huggingface
from langchain_community.embeddings.huggingface import HuggingFaceBgeEmbeddings
from langchain_community.vectorstores import FAISS
from langchain.chains import LLMChain
from langchain.chains.conversation.memory import ConversationBufferWindowMemory #, ConversationBufferMemory, ConversationSummaryMemory, ConversationSummaryBufferMemory
import os, dotenv
from dotenv import load_dotenv
load_dotenv()
if not os.path.isdir("./.streamlit"):
os.mkdir("./.streamlit")
print('made streamlit folder')
if not os.path.isfile("./.streamlit/secrets.toml"):
with open("./.streamlit/secrets.toml", "w") as f:
f.write(os.environ.get("STREAMLIT_SECRETS"))
print('made new file')
import db_firestore as db
## Load from streamlit!!
os.environ["HF_TOKEN"] = os.environ.get("HF_TOKEN") or st.secrets["HF_TOKEN"]
os.environ["OPENAI_API_KEY"] = os.environ.get("OPENAI_API_KEY") or st.secrets["OPENAI_API_KEY"]
os.environ["FIREBASE_CREDENTIAL"] = os.environ.get("FIREBASE_CREDENTIAL") or st.secrets["FIREBASE_CREDENTIAL"]
st.title("UAT for PatientLLM and GraderLLM")
## Hardcode indexes for now,
indexes = """Bleeding
ChestPain
Dysphagia
Headache
ShortnessOfBreath
Vomiting
Weakness
Weakness2""".split("\n")
if "selected_index" not in st.session_state:
st.session_state.selected_index = 3
if "index_selectbox" not in st.session_state:
st.session_state.index_selectbox = "Headache"
index_selectbox = st.selectbox("Select index",indexes, index=int(st.session_state.selected_index))
if index_selectbox != indexes[st.session_state.selected_index]:
st.session_state.selected_index = indexes.index(index_selectbox)
st.session_state.index_selectbox = index_selectbox
del st.session_state["store"]
del st.session_state["store2"]
del st.session_state["retriever"]
del st.session_state["retriever2"]
del st.session_state["chain"]
del st.session_state["chain2"]
if "openai_model" not in st.session_state:
st.session_state["openai_model"] = "gpt-3.5-turbo-1106"
if "messages_1" not in st.session_state:
st.session_state.messages_1 = []
if "messages_2" not in st.session_state:
st.session_state.messages_2 = []
# if "start_time" not in st.session_state:
# st.session_state.start_time = None
if "active_chat" not in st.session_state:
st.session_state.active_chat = 1
model_name = "bge-large-en-v1.5"
model_kwargs = {"device": "cpu"}
# model_kwargs = {"device": "cuda"}
encode_kwargs = {"normalize_embeddings": True}
if "embeddings" not in st.session_state:
st.session_state.embeddings = HuggingFaceBgeEmbeddings(
# model_name=model_name,
model_kwargs = model_kwargs,
encode_kwargs = encode_kwargs)
embeddings = st.session_state.embeddings
if "llm" not in st.session_state:
st.session_state.llm = ChatOpenAI(model_name="gpt-3.5-turbo-1106", temperature=0)
llm = st.session_state.llm
if "llm_i" not in st.session_state:
st.session_state.llm_i = OpenAI(model_name="gpt-3.5-turbo-instruct", temperature=0)
llm_i = st.session_state.llm_i
if "llm_gpt4" not in st.session_state:
st.session_state.llm_gpt4 = ChatOpenAI(model_name="gpt-4-1106-preview", temperature=0)
llm_gpt4 = st.session_state.llm_gpt4
## ------------------------------------------------------------------------------------------------
## Patient part
index_name = f"indexes/{st.session_state.index_selectbox}/QA"
if "store" not in st.session_state:
st.session_state.store = db.get_store(index_name, embeddings=embeddings)
store = st.session_state.store
if "TEMPLATE" not in st.session_state:
with open('templates/patient.txt', 'r') as file:
TEMPLATE = file.read()
st.session_state.TEMPLATE = TEMPLATE
with st.expander("Patient Prompt"):
TEMPLATE = st.text_area("Patient Prompt", value=st.session_state.TEMPLATE)
prompt = PromptTemplate(
input_variables = ["question", "context"],
template = TEMPLATE
)
if "retriever" not in st.session_state:
st.session_state.retriever = store.as_retriever(search_type="similarity", search_kwargs={"k":2})
retriever = st.session_state.retriever
def format_docs(docs):
return "\n--------------------\n".join(doc.page_content for doc in docs)
if "memory" not in st.session_state:
st.session_state.memory = ConversationBufferWindowMemory(
llm=llm, memory_key="chat_history", input_key="question",
k=5, human_prefix="student", ai_prefix="patient",)
memory = st.session_state.memory
if ("chain" not in st.session_state
or
st.session_state.TEMPLATE != TEMPLATE):
st.session_state.chain = (
{
"context": retriever | format_docs,
"question": RunnablePassthrough()
} |
LLMChain(llm=llm, prompt=prompt, memory=memory, verbose=False)
)
chain = st.session_state.chain
sp_mapper = {"human":"student","ai":"patient", "user":"student","assistant":"patient"}
## ------------------------------------------------------------------------------------------------
## ------------------------------------------------------------------------------------------------
## Grader part
index_name = f"indexes/{st.session_state.index_selectbox}/Rubric"
if "store2" not in st.session_state:
st.session_state.store2 = db.get_store(index_name, embeddings=embeddings)
store2 = st.session_state.store2
if "TEMPLATE2" not in st.session_state:
with open('templates/grader.txt', 'r') as file:
TEMPLATE2 = file.read()
st.session_state.TEMPLATE2 = TEMPLATE2
with st.expander("Grader Prompt"):
TEMPLATE2 = st.text_area("Grader Prompt", value=st.session_state.TEMPLATE2)
prompt2 = PromptTemplate(
input_variables = ["question", "context", "history"],
template = TEMPLATE2
)
if "retriever2" not in st.session_state:
st.session_state.retriever2 = store2.as_retriever(search_type="similarity", search_kwargs={"k":2})
retriever2 = st.session_state.retriever2
def format_docs(docs):
return "\n--------------------\n".join(doc.page_content for doc in docs)
# fake_history = '\n'.join([(sp_mapper.get(i.type, i.type) + ": "+ i.content) for i in memory.chat_memory.messages])
fake_history = '\n'.join([(sp_mapper.get(i['role'], i['role']) + ": "+ i['content']) for i in st.session_state.messages_1])
st.write(fake_history)
def y(_):
return fake_history
if ("chain2" not in st.session_state
or
st.session_state.TEMPLATE2 != TEMPLATE2):
st.session_state.chain2 = (
{
"context": retriever | format_docs,
"history": y,
"question": RunnablePassthrough(),
} |
# LLMChain(llm=llm_i, prompt=prompt2, verbose=False ) #|
LLMChain(llm=llm_gpt4, prompt=prompt2, verbose=False ) #|
| {
"json": itemgetter("text"),
"text": (
LLMChain(
llm=llm,
prompt=PromptTemplate(
input_variables=["text"],
template="Interpret the following JSON of the student's grades, and do a write-up for each section.\n\n```json\n{text}\n```"),
verbose=False)
)
}
)
chain2 = st.session_state.chain2
## ------------------------------------------------------------------------------------------------
## ------------------------------------------------------------------------------------------------
## Streamlit now
# from dotenv import load_dotenv
# import os
# load_dotenv()
# key = os.environ.get("OPENAI_API_KEY")
# client = OpenAI(api_key=key)
if st.button("Clear History and Memory", type="primary"):
st.session_state.messages_1 = []
st.session_state.messages_2 = []
st.session_state.memory = ConversationBufferWindowMemory(llm=llm, memory_key="chat_history", input_key="question" )
memory = st.session_state.memory
## Testing HTML
# html_string = """
# <canvas></canvas>
# <script>
# canvas = document.querySelector('canvas');
# canvas.width = 1024;
# canvas.height = 576;
# console.log(canvas);
# const c = canvas.getContext('2d');
# c.fillStyle = "green";
# c.fillRect(0,0,canvas.width,canvas.height);
# const img = new Image();
# img.src = "./tksfordumtrive.png";
# c.drawImage(img, 10, 10);
# </script>
# <style>
# body {
# margin: 0;
# }
# </style>
# """
# components.html(html_string,
# width=1280,
# height=640)
st.write("Timer has been removed, switch with this button")
if st.button(f"Switch to {'PATIENT' if st.session_state.active_chat==2 else 'GRADER'}"+".... Buggy button, please double click"):
st.session_state.active_chat = 3 - st.session_state.active_chat
# st.write("Currently in " + ('PATIENT' if st.session_state.active_chat==2 else 'GRADER'))
# Create two columns for the two chat interfaces
col1, col2 = st.columns(2)
# First chat interface
with col1:
st.subheader("Student LLM")
for message in st.session_state.messages_1:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Second chat interface
with col2:
# st.write("pls dun spam this, its tons of tokens cos chat history")
st.subheader("Grader LLM")
st.write("grader takes a while to load... please be patient")
for message in st.session_state.messages_2:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Timer and Input
# time_left = None
# if st.session_state.start_time:
# time_elapsed = datetime.datetime.now() - st.session_state.start_time
# time_left = datetime.timedelta(minutes=10) - time_elapsed
# st.write(f"Time left: {time_left}")
# if time_left is None or time_left > datetime.timedelta(0):
# # Chat 1 is active
# prompt = st.text_input("Enter your message for Chat 1:")
# active_chat = 1
# messages = st.session_state.messages_1
# elif time_left and time_left <= datetime.timedelta(0):
# # Chat 2 is active
# prompt = st.text_input("Enter your message for Chat 2:")
# active_chat = 2
# messages = st.session_state.messages_2
if st.session_state.active_chat==1:
text_prompt = st.text_input("Enter your message for PATIENT")
messages = st.session_state.messages_1
else:
text_prompt = st.text_input("Enter your message for GRADER")
messages = st.session_state.messages_2
from langchain.callbacks.manager import tracing_v2_enabled
from uuid import uuid4
import os
os.environ['LANGCHAIN_TRACING_V2']='true'
os.environ['LANGCHAIN_ENDPOINT']='https://api.smith.langchain.com'
os.environ['LANGCHAIN_API_KEY']='ls__4ad767c45b844e6a8d790e12f556d3ca'
os.environ['LANGCHAIN_PROJECT']='streamlit'
if text_prompt:
messages.append({"role": "user", "content": text_prompt})
with (col1 if st.session_state.active_chat == 1 else col2):
with st.chat_message("user"):
st.markdown(text_prompt)
with (col1 if st.session_state.active_chat == 1 else col2):
with st.chat_message("assistant"):
message_placeholder = st.empty()
with tracing_v2_enabled(project_name = "streamlit"):
if st.session_state.active_chat==1:
full_response = chain.invoke(text_prompt).get("text")
else:
full_response = chain2.invoke(text_prompt).get("text").get("text")
message_placeholder.markdown(full_response)
messages.append({"role": "assistant", "content": full_response})
# import streamlit as st
# import time
# def count_down(ts):
# with st.empty():
# while ts:
# mins, secs = divmod(ts, 60)
# time_now = '{:02d}:{:02d}'.format(mins, secs)
# st.header(f"{time_now}")
# time.sleep(1)
# ts -= 1
# st.write("Time Up!")
# def main():
# st.title("Pomodoro")
# time_minutes = st.number_input('Enter the time in minutes ', min_value=1, value=25)
# time_in_seconds = time_minutes * 60
# if st.button("START"):
# count_down(int(time_in_seconds))
# if __name__ == '__main__':
# main()
st.write('fake history is:')
st.write(y(""))
st.write('done')
|