File size: 40,647 Bytes
bc4dcba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02eae13
 
 
 
 
 
 
 
 
 
 
 
bc4dcba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02eae13
 
bc4dcba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
from openai import OpenAI
import streamlit as st
import streamlit.components.v1 as components
import datetime, time
from dataclasses import dataclass
import math
import base64

## Firestore ??
import os
# import sys
# import inspect
# currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
# parentdir = os.path.dirname(currentdir)
# sys.path.append(parentdir)




# ## ----------------------------------------------------------------
# ## LLM Part
import openai
from langchain_openai import ChatOpenAI, OpenAI, OpenAIEmbeddings
import tiktoken
from langchain.prompts.few_shot import FewShotPromptTemplate
from langchain.prompts.prompt import PromptTemplate
from operator import itemgetter
from langchain.schema import StrOutputParser
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough

import langchain_community.embeddings.huggingface
from langchain_community.embeddings.huggingface import HuggingFaceBgeEmbeddings
from langchain_community.vectorstores import FAISS

from langchain.chains import LLMChain
from langchain.chains.conversation.memory import ConversationBufferWindowMemory #, ConversationBufferMemory, ConversationSummaryMemory, ConversationSummaryBufferMemory

import os, dotenv
from dotenv import load_dotenv
load_dotenv()

if not os.path.isdir("./.streamlit"):
    os.mkdir("./.streamlit")
    print('made streamlit folder')
if not os.path.isfile("./.streamlit/secrets.toml"):
    with open("./.streamlit/secrets.toml", "w") as f:
        f.write(os.environ.get("STREAMLIT_SECRETS"))
    print('made new file')
    
import os, dotenv
from dotenv import load_dotenv
load_dotenv()

if not os.path.isdir("./.streamlit"):
    os.mkdir("./.streamlit")
    print('made streamlit folder')
if not os.path.isfile("./.streamlit/secrets.toml"):
    with open("./.streamlit/secrets.toml", "w") as f:
        f.write(os.environ.get("STREAMLIT_SECRETS"))
    print('made new file')
    

import db_firestore as db

## Load from streamlit!!
os.environ["HF_TOKEN"] = os.environ.get("HF_TOKEN") or st.secrets["HF_TOKEN"]
os.environ["OPENAI_API_KEY"] = os.environ.get("OPENAI_API_KEY") or st.secrets["OPENAI_API_KEY"]
os.environ["FIREBASE_CREDENTIAL"] = os.environ.get("FIREBASE_CREDENTIAL") or st.secrets["FIREBASE_CREDENTIAL"]


if "openai_model" not in st.session_state:
    st.session_state["openai_model"] = "gpt-3.5-turbo-1106"

## Hardcode indexes for now
## TODO: Move indexes to firebase
indexes = """Bleeding
ChestPain
Dysphagia
Headache
ShortnessOfBreath
Vomiting
Weakness
Weakness2""".split("\n")

# if "selected_index" not in st.session_state:
#     st.session_state.selected_index = 3
    
# if "index_selectbox" not in st.session_state:
#     st.session_state.index_selectbox = "Headache"

# index_selectbox = st.selectbox("Select index",indexes, index=int(st.session_state.selected_index))

# if index_selectbox != indexes[st.session_state.selected_index]:
#     st.session_state.selected_index = indexes.index(index_selectbox)
#     st.session_state.index_selectbox = index_selectbox
#     del st.session_state["store"]
#     del st.session_state["store2"]
#     del st.session_state["retriever"]
#     del st.session_state["retriever2"]
#     del st.session_state["chain"]
#     del st.session_state["chain2"]


model_name = "bge-large-en-v1.5"
model_kwargs = {"device": "cpu"}
encode_kwargs = {"normalize_embeddings": True}
if "embeddings" not in st.session_state:
    st.session_state.embeddings = HuggingFaceBgeEmbeddings(
        # model_name=model_name, 
        model_kwargs = model_kwargs,
        encode_kwargs = encode_kwargs)
embeddings = st.session_state.embeddings

if "llm" not in st.session_state:
    st.session_state.llm = ChatOpenAI(model_name="gpt-3.5-turbo-1106", temperature=0)
llm = st.session_state.llm
if "llm_i" not in st.session_state:
    st.session_state.llm_i = OpenAI(model_name="gpt-3.5-turbo-instruct", temperature=0)
llm_i = st.session_state.llm_i
if "llm_gpt4" not in st.session_state:
    st.session_state.llm_gpt4 = ChatOpenAI(model_name="gpt-4-1106-preview", temperature=0)
llm_gpt4 = st.session_state.llm_gpt4

# ## ------------------------------------------------------------------------------------------------
# ## Patient part

# index_name = f"indexes/{st.session_state.index_selectbox}/QA"

# if "store" not in st.session_state:
#     st.session_state.store = db.get_store(index_name, embeddings=embeddings)
# store = st.session_state.store

if "TEMPLATE" not in st.session_state:
    with open('templates/patient.txt', 'r') as file: 
        TEMPLATE = file.read()
    st.session_state.TEMPLATE = TEMPLATE
TEMPLATE = st.session_state.TEMPLATE
# with st.expander("Patient Prompt"):
#     TEMPLATE = st.text_area("Patient Prompt", value=st.session_state.TEMPLATE)

prompt = PromptTemplate(
    input_variables = ["question", "context"],
    template = st.session_state.TEMPLATE
)

# if "retriever" not in st.session_state:
#     st.session_state.retriever = store.as_retriever(search_type="similarity", search_kwargs={"k":2})
# retriever = st.session_state.retriever

def format_docs(docs):
    return "\n--------------------\n".join(doc.page_content for doc in docs)


# if "memory" not in st.session_state:
#     st.session_state.memory = ConversationBufferWindowMemory(
#         llm=llm, memory_key="chat_history", input_key="question", 
#         k=5, human_prefix="student", ai_prefix="patient",)
# memory = st.session_state.memory


# if ("chain" not in st.session_state
#     or 
#     st.session_state.TEMPLATE != TEMPLATE):
#     st.session_state.chain = (
#     {
#         "context": retriever | format_docs, 
#         "question": RunnablePassthrough()
#         } | 
#     LLMChain(llm=llm, prompt=prompt, memory=memory, verbose=False)
# )
# chain = st.session_state.chain

sp_mapper = {"human":"student","ai":"patient", "user":"student","assistant":"patient"}

# ## ------------------------------------------------------------------------------------------------
# ## ------------------------------------------------------------------------------------------------
# ## Grader part
# index_name = f"indexes/{st.session_state.index_selectbox}/Rubric"

# if "store2" not in st.session_state:
#     st.session_state.store2 = db.get_store(index_name, embeddings=embeddings)
# store2 = st.session_state.store2

if "TEMPLATE2" not in st.session_state:
    with open('templates/grader.txt', 'r') as file: 
        TEMPLATE2 = file.read()
    st.session_state.TEMPLATE2 = TEMPLATE2
TEMPLATE2 = st.session_state.TEMPLATE2
# with st.expander("Grader Prompt"):
#     TEMPLATE2 = st.text_area("Grader Prompt", value=st.session_state.TEMPLATE2)

prompt2 = PromptTemplate(
    input_variables = ["question", "context", "history"],
    template = st.session_state.TEMPLATE2
)

def get_patient_chat_history(_):
    return st.session_state.get("patient_chat_history")

# if "retriever2" not in st.session_state:
#     st.session_state.retriever2 = store2.as_retriever(search_type="similarity", search_kwargs={"k":2})
# retriever2 = st.session_state.retriever2

# def format_docs(docs):
#     return "\n--------------------\n".join(doc.page_content for doc in docs)


# fake_history = '\n'.join([(sp_mapper.get(i.type, i.type) + ": "+ i.content) for i in memory.chat_memory.messages])
# fake_history = '\n'.join([(sp_mapper.get(i['role'], i['role']) + ": "+ i['content']) for i in st.session_state.messages_1])
# st.write(fake_history)

# def y(_): 
#     return fake_history

# if ("chain2" not in st.session_state
#     or 
#     st.session_state.TEMPLATE2 != TEMPLATE2):
#     st.session_state.chain2 = (
#     {
#         "context": retriever2 | format_docs, 
#         "history": y,
#         "question": RunnablePassthrough(),
#         } | 

#         # LLMChain(llm=llm_i, prompt=prompt2, verbose=False ) #|
#         LLMChain(llm=llm_gpt4, prompt=prompt2, verbose=False ) #|
#         | {
#             "json": itemgetter("text"),
#             "text": (
#                 LLMChain(
#                     llm=llm, 
#                     prompt=PromptTemplate(
#                         input_variables=["text"],
#                         template="Interpret the following JSON of the student's grades, and do a write-up for each section.\n\n```json\n{text}\n```"),
#                         verbose=False)
#                 )
#     }
# )
# chain2 = st.session_state.chain2

# ## ------------------------------------------------------------------------------------------------
# ## ------------------------------------------------------------------------------------------------
# ## Streamlit now

# # from dotenv import load_dotenv
# # import os
# # load_dotenv()
# # key = os.environ.get("OPENAI_API_KEY")
# # client = OpenAI(api_key=key)


# if st.button("Clear History and Memory", type="primary"):
#     st.session_state.messages_1 = []
#     st.session_state.messages_2 = []
#     st.session_state.memory = ConversationBufferWindowMemory(llm=llm, memory_key="chat_history", input_key="question" )
#     memory = st.session_state.memory

# ## Testing HTML
# # html_string = """
# # <canvas></canvas>


# # <script>
# #     canvas = document.querySelector('canvas');
# #     canvas.width = 1024;
# #     canvas.height = 576;
# #     console.log(canvas);

# #     const c = canvas.getContext('2d');
# #     c.fillStyle = "green";
# #     c.fillRect(0,0,canvas.width,canvas.height);

# #     const img = new Image();
# #     img.src = "./tksfordumtrive.png";
# #     c.drawImage(img,  10, 10);
# # </script>

# # <style>
# #     body {
# #         margin: 0;
# #     }
# # </style>
# # """
# # components.html(html_string,
# #                 width=1280,
# #                 height=640)


# st.write("Timer has been removed, switch with this button")

# if st.button(f"Switch to {'PATIENT' if st.session_state.active_chat==2 else 'GRADER'}"+".... Buggy button, please double click"):
#     st.session_state.active_chat = 3 - st.session_state.active_chat

# # st.write("Currently in " + ('PATIENT' if st.session_state.active_chat==2 else 'GRADER'))

# # Create two columns for the two chat interfaces
# col1, col2 = st.columns(2)

# # First chat interface
# with col1:
#     st.subheader("Student LLM")
#     for message in st.session_state.messages_1:
#         with st.chat_message(message["role"]):
#             st.markdown(message["content"])

# # Second chat interface
# with col2:
#     # st.write("pls dun spam this, its tons of tokens cos chat history")
#     st.subheader("Grader LLM")
#     st.write("grader takes a while to load... please be patient")
#     for message in st.session_state.messages_2:
#         with st.chat_message(message["role"]):
#             st.markdown(message["content"])

# # Timer and Input
# # time_left = None
# # if st.session_state.start_time:
# #     time_elapsed = datetime.datetime.now() - st.session_state.start_time
# #     time_left = datetime.timedelta(minutes=10) - time_elapsed
# #     st.write(f"Time left: {time_left}")

# # if time_left is None or time_left > datetime.timedelta(0):
# #     # Chat 1 is active
# #     prompt = st.text_input("Enter your message for Chat 1:")
# #     active_chat = 1
# #     messages = st.session_state.messages_1
# # elif time_left and time_left <= datetime.timedelta(0):
# #     # Chat 2 is active
# #     prompt = st.text_input("Enter your message for Chat 2:")
# #     active_chat = 2
# #     messages = st.session_state.messages_2

# if st.session_state.active_chat==1:
#     text_prompt = st.text_input("Enter your message for PATIENT")
#     messages = st.session_state.messages_1
# else:
#     text_prompt = st.text_input("Enter your message for GRADER")
#     messages = st.session_state.messages_2


# from langchain.callbacks.manager import tracing_v2_enabled
# from uuid import uuid4
# import os

# if text_prompt:
#     messages.append({"role": "user", "content": text_prompt})

#     with (col1 if st.session_state.active_chat == 1 else col2):
#         with st.chat_message("user"):
#             st.markdown(text_prompt)

#     with (col1 if st.session_state.active_chat == 1 else col2):
#         with st.chat_message("assistant"):
#             message_placeholder = st.empty()
#             if True: ## with tracing_v2_enabled(project_name = "streamlit"):
#                 if st.session_state.active_chat==1:
#                     full_response = chain.invoke(text_prompt).get("text")
#                 else:
#                     full_response = chain2.invoke(text_prompt).get("text").get("text")
#             message_placeholder.markdown(full_response)
#             messages.append({"role": "assistant", "content": full_response})

            
# st.write('fake history is:')
# st.write(y(""))
# st.write('done')




## ====================

if not st.session_state.get("scenario_list", None):
    st.session_state.scenario_list = indexes

def init_patient_llm():
    if "messages_1" not in st.session_state:
        st.session_state.messages_1 = []
    ## messages 2?

    index_name = f"indexes/{st.session_state.scenario_list[st.session_state.selected_scenario]}/QA"
    if "store" not in st.session_state:
        st.session_state.store = db.get_store(index_name, embeddings=embeddings)
    if "retriever" not in st.session_state:
        st.session_state.retriever = st.session_state.store.as_retriever(search_type="similarity", search_kwargs={"k":2})
    if "memory" not in st.session_state:
        st.session_state.memory = ConversationBufferWindowMemory(
            llm=llm, memory_key="chat_history", input_key="question", 
            k=5, human_prefix="student", ai_prefix="patient",)
    
    if ("chain" not in st.session_state
        or 
        st.session_state.TEMPLATE != TEMPLATE):
        st.session_state.chain = (
        {
            "context": st.session_state.retriever | format_docs, 
            "question": RunnablePassthrough()
            } | 
        LLMChain(llm=llm, prompt=prompt, memory=st.session_state.memory, verbose=False)
    )

def init_grader_llm():
    ## Grader
    index_name = f"indexes/{st.session_state.scenario_list[st.session_state.selected_scenario]}/Rubric"
    
    ## Reset time
    st.session_state.start_time = False

    if "store2" not in st.session_state:
        st.session_state.store2 = db.get_store(index_name, embeddings=embeddings)
    if "retriever2" not in st.session_state:
        st.session_state.retriever2 = st.session_state.store2.as_retriever(search_type="similarity", search_kwargs={"k":2})

    ## Re-init history
    st.session_state["patient_chat_history"] = "History\n" + '\n'.join([(sp_mapper.get(i.type, i.type) + ": "+ i.content) for i in st.session_state.memory.chat_memory.messages])

    if ("chain2" not in st.session_state
        or 
        st.session_state.TEMPLATE2 != TEMPLATE2):
        st.session_state.chain2 = (
        {
            "context": st.session_state.retriever2 | format_docs, 
            "history": (get_patient_chat_history),
            "question": RunnablePassthrough(),
            } | 

            # LLMChain(llm=llm_i, prompt=prompt2, verbose=False ) #|
            LLMChain(llm=llm_gpt4, prompt=prompt2, verbose=False ) #|
            | {
                "json": itemgetter("text"),
                "text": (
                    LLMChain(
                        llm=llm, 
                        prompt=PromptTemplate(
                            input_variables=["text"],
                            template="Interpret the following JSON of the student's grades, and do a write-up for each section.\n\n```json\n{text}\n```"),
                            verbose=False)
                    )
        }
    )


login_info = {
    "bob":"builder",
    "student1": "password",
    "admin":"admin"
}

def set_username(x):
    st.session_state.username = x

def validate_username(username, password):
    if login_info.get(username) == password:
        set_username(username)
    else:
        st.warning("Wrong username or password")
    return None

if not st.session_state.get("username"):
    ## ask to login
    st.title("Login")
    username = st.text_input("Username:")
    password = st.text_input("Password:", type="password")
    login_button = st.button("Login", on_click=validate_username, args=[username, password])

else:
    if True: ## Says hello and logout 
        col_1, col_2 = st.columns([1,3])
        col_2.title(f"Hello there, {st.session_state.username}")
        # Display logout button
        if col_1.button('Logout'):
            # Remove username from session state
            del st.session_state.username
            # Rerun the app to go back to the login view
            st.rerun()

    scenario_tab, dashboard_tab = st.tabs(["Training", "Dashboard"])
    # st.header("head")
    # st.markdown("## markdown")
    # st.caption("caption")
    # st.divider()
    # import pandas as pd
    # import numpy as np
    # map_data = pd.DataFrame(
    #     np.random.randn(1000, 2) / [50, 50] + [37.76, -122.4],
    #     columns=['lat', 'lon'])

    # st.map(map_data)

    class ScenarioTabIndex:
        SELECT_SCENARIO = 0
        PATIENT_LLM = 1
        GRADER_LLM = 2

    def set_scenario_tab_index(x):
        st.session_state.scenario_tab_index=x
        return None
    
    def select_scenario_and_change_tab(_):
        set_scenario_tab_index(ScenarioTabIndex.PATIENT_LLM)
    
    def go_to_patient_llm():
        selected_scenario = st.session_state.get('selected_scenario')
        if selected_scenario is None or selected_scenario < 0:
            st.warning("Please select a scenario!")
        else:
            ## TODO: Clear state for time, LLM, Index, etc
            states = ["store", "store2","retriever","retriever2","chain","chain2"]
            for state_to_del in states:
                if state_to_del in st.session_state:
                    del st.session_state[state_to_del]
            init_patient_llm()
            set_scenario_tab_index(ScenarioTabIndex.PATIENT_LLM)
    if not st.session_state.get("scenario_tab_index"):
        set_scenario_tab_index(ScenarioTabIndex.SELECT_SCENARIO)
        
    with scenario_tab:
        ## Check in select scenario
        if st.session_state.scenario_tab_index == ScenarioTabIndex.SELECT_SCENARIO:
            def change_scenario(scenario_index):
                st.session_state.selected_scenario = scenario_index
            if st.session_state.get("selected_scenario", None) is None:
                st.session_state.selected_scenario = -1
            
            total_cols = 3
            rows = list()
            # for _ in range(0, number_of_indexes, total_cols):
            #     rows.extend(st.columns(total_cols))

            st.header(f"Selected Scenario: {st.session_state.scenario_list[st.session_state.selected_scenario] if st.session_state.selected_scenario>=0 else 'None'}")
            for i, scenario in enumerate(st.session_state.scenario_list):
                if i % total_cols == 0:
                    rows.extend(st.columns(total_cols))
                curr_col = rows[(-total_cols + i % total_cols)]
                tile = curr_col.container(height=120)
                ## TODO: Implement highlight box if index is selected
                # if st.session_state.selected_scenario == i:
                #     tile.markdown("<style>background: pink !important;</style>", unsafe_allow_html=True)
                tile.write(":balloon:")
                tile.button(label=scenario, on_click=change_scenario, args=[i])

            select_scenario_btn = st.button("Select Scenario", on_click=go_to_patient_llm, args=[])
                
        elif st.session_state.scenario_tab_index == ScenarioTabIndex.PATIENT_LLM:
            st.header("Patient info")
            ## TODO: Put the patient's info here, from SCENARIO
            # st.write("Pull the info here!!!")
            col1, col2, col3 = st.columns([1,3,1])
            with col1:
                back_to_scenario_btn = st.button("Back to selection", on_click=set_scenario_tab_index, args=[ScenarioTabIndex.SELECT_SCENARIO])
            with col3: 
                start_timer_button = st.button("START")

            with col2:
                TIME_LIMIT = 60*10 ## to change to 10 minutes
                time.sleep(1)
                if start_timer_button:
                    st.session_state.start_time = datetime.datetime.now()
                # st.session_state.time = -1 if not st.session_state.get('time') else st.session_state.get('time') 
                st.session_state.start_time = False if not st.session_state.get('start_time') else st.session_state.start_time
                    
                from streamlit.components.v1 import html

                
                html(f"""
                    <style>
                    @import url('https://fonts.googleapis.com/css2?family=Pixelify+Sans&display=swap');
                    @import url('https://fonts.googleapis.com/css2?family=VT323&display=swap');
                    @import url('https://fonts.googleapis.com/css2?family=Monofett&display=swap');
            </style>

            <style>
                html {{
                    font-family: 'Pixelify Sans', monospace, serif;
                    font-family: 'VT323', monospace, sans-serif;
                    font-family: 'Monofett', monospace, sans-serif;
                    font-family: 'Times New Roman', sans-serif;
                    background-color: #0E1117 !important;
                    color: RGB(250,250,250);
                    // border-radius: 25%;
                    // border: 1px solid #0E1117;
                }}
                html, body {{
                    // background-color: transparent !important;
                    // margin: 10px;
                    // border: 1px solid pink;
                    text-align: center;
                }}
                body {{
                    background-color: #0E1117;
                    // margin: 10px;
                    // border: 1px solid pink;
                }}
                
                body #ttime {{
                    font-weight: bold;
                    font-family: 'VT323', monospace, sans-serif;
                    // font-family: 'Pixelify Sans', monospace, serif;
                }}
            </style>

            <div>
                <h1>Time left</h1>
                <h1 id="ttime"> </h1>
            </div>


            <script>

            var x = setInterval(function() {{
                var start_time_str = "{st.session_state.start_time}";
                var start_date = new Date(start_time_str);
                var curr_date = new Date();
                var time_difference = curr_date - start_date;
                var time_diff_secs = Math.floor(time_difference / 1000);
                var time_left = {TIME_LIMIT} - time_diff_secs;
                var mins = Math.floor(time_left / 60);
                var secs = time_left % 60;
                var fmins = mins.toString().padStart(2, '0');
                var fsecs = secs.toString().padStart(2, '0');
                console.log("run");

                if (start_time_str == "False") {{
                    document.getElementById("ttime").innerHTML = 'Press "Start" to start!';
                    clearInterval(x);
                }}
                else if (time_left <= 0) {{
                    document.getElementById("ttime").innerHTML = "Time's Up!!!";
                    clearInterval(x);
                }}
                else {{
                    document.getElementById("ttime").innerHTML = `${{fmins}}:${{fsecs}}`;
                }}
            }}, 999)

            </script>
                    """,
                    )

            with open("./public/char.png", "rb") as f:
                contents = f.read()
            data_url = base64.b64encode(contents).decode("utf-8")
                
            with open("./public/chars/Male_talk.gif", "rb") as f:
                contents = f.read()
            patient_url = base64.b64encode(contents).decode("utf-8")
            interactive_container = st.container()
            user_input_col ,r = st.columns([4,1])
            def to_grader_llm():
                init_grader_llm()
                set_scenario_tab_index(ScenarioTabIndex.GRADER_LLM)

            with r:
                to_grader_btn = st.button("To Grader", on_click=to_grader_llm)
            with user_input_col:
                user_inputs = st.text_input("", placeholder="Chat with the patient here!", key="user_inputs")
                if user_inputs:
                    response = st.session_state.chain.invoke(user_inputs).get("text")
                    st.session_state.patient_response = response
            with interactive_container:
                html(f"""
                 
                <style>
                    @import url('https://fonts.googleapis.com/css2?family=Pixelify+Sans&display=swap');
                </style>

                <style>
                    html {{
                        font-family: 'Pixelify Sans', monospace, serif;
                 }}
                 </style>
                 <div>
                  <img src="data:image/png;base64,{data_url}" />
                  <span id="user_input">You: {st.session_state.get('user_inputs') or ''}</span>
                 </div>
                 
                 <div>
                  <img src="data:image/gif;base64,{patient_url}" /><br/>
                  <span id="bot_response">{'Patient: '+st.session_state.get('patient_response') if st.session_state.get('patient_response') else '...'}</span>
                 </div>
            """, height=500)
            
        elif st.session_state.scenario_tab_index == ScenarioTabIndex.GRADER_LLM:
            st.session_state.grader_output = "" if not st.session_state.get("grader_output") else st.session_state.grader_output
            def get_grades():
                txt = f"""
<summary>
    {st.session_state.diagnosis}
</summary>
<differential-1>
    {st.session_state.differential_1}
</differential-1>
<differential-2>
    {st.session_state.differential_2}
</differential-2>
<differential-3>
    {st.session_state.differential_3}
</differential-3>
"""
                response = st.session_state.chain2.invoke(txt)
                st.session_state.grader_output = response
            st.session_state.has_llm_output = bool(st.session_state.get("grader_output"))
             ## TODO: False for now, need check llm output!
            with st.expander("Your Diagnosis and Differentials", expanded=not st.session_state.has_llm_output):
                st.session_state.diagnosis = st.text_area("Input your case summary and **main** diagnosis:", placeholder="This is a young gentleman with significant family history of stroke, and medical history of poorly-controlled hypertension. He presents with acute onset of bitemporal headache associated with dysarthria and meningism symptoms. Important negatives include the absence of focal neurological deficits, ataxia, and recent trauma.")
                st.divider()
                st.session_state.differential_1 = st.text_input("Differential 1")
                st.session_state.differential_2 = st.text_input("Differential 2")
                st.session_state.differential_3 = st.text_input("Differential 3")
                with st.columns(6)[5]:
                    send_for_grading = st.button("Get grades!", on_click=get_grades)
            with st.expander("Your rubrics", expanded=st.session_state.has_llm_output):
                if st.session_state.grader_output:
                    st.write(st.session_state.grader_output.get("text").get("text"))
            
            # back_btn = st.button("back to LLM?", on_click=set_scenario_tab_index, args=[ScenarioTabIndex.PATIENT_LLM])
            back_btn = st.button("New Scenario?", on_click=set_scenario_tab_index, args=[ScenarioTabIndex.SELECT_SCENARIO])

    with dashboard_tab:
        import dotenv
        import firebase_admin, json
        from firebase_admin import credentials, storage, firestore
        import plotly.express as px
        import plotly.graph_objects as go
        import pandas as pd

        cred = credentials.Certificate(json.loads(os.environ.get("FIREBASE_CREDENTIAL")))

        # Initialize Firebase (if not already initialized)
        if not firebase_admin._apps:
            firebase_admin.initialize_app(cred, {'storageBucket': 'healthhack-store.appspot.com'})

        #firebase_admin.initialize_app(cred,{'storageBucket': 'healthhack-store.appspot.com'}) # connecting to firebase
        db_client = firestore.client()

        docs = db_client.collection("clinical_scores").stream()

        # Create a list of dictionaries from the documents
        data = []
        for doc in docs:
            doc_dict = doc.to_dict()
            doc_dict['document_id'] = doc.id  # In case you need the document ID later
            data.append(doc_dict)

        # Create a DataFrame
        df = pd.DataFrame(data)

        username = st.session_state.get("username")
        st.title("Dashboard")
        
        # Convert date from string to datetime if it's not already in datetime format
        df['date'] = pd.to_datetime(df['date'], errors='coerce')

        # Streamlit page configuration
        #st.set_page_config(page_title="Interactive Data Dashboard", layout="wide")

        # Use df_selection for filtering data based on authenticated user
        if username != 'admin':
            df_selection = df[df['name'] == username]
        else:
            df_selection = df  # Admin sees all data

        # Chart Title: Student Performance Dashboard
        st.title(":bar_chart: Student Performance Dashboard")
        st.markdown("##")

        # Chart 1: Total attempts
        if df_selection.empty:
            st.error("No data available to display.")
        else:
            # Total attempts by name (filtered)
            total_attempts_by_name = df_selection.groupby("name")['date'].count().reset_index()
            total_attempts_by_name.columns = ['name', 'total_attempts']
            
            # For a single point or multiple points, use a scatter plot
            fig_total_attempts = px.scatter(
                total_attempts_by_name,
                x="name",
                y="total_attempts",
                title="<b>Total Attempts</b>",
                size='total_attempts',  # Adjust the size of points
                color_discrete_sequence=["#0083B8"] * len(total_attempts_by_name),
                template="plotly_white",
                text='total_attempts'  # Display total_attempts as text labels
            )
            
            # Add text annotation for each point
            for line in range(0, total_attempts_by_name.shape[0]):
                fig_total_attempts.add_annotation(
                    text=str(total_attempts_by_name['total_attempts'].iloc[line]),
                    x=total_attempts_by_name['name'].iloc[line],
                    y=total_attempts_by_name['total_attempts'].iloc[line],
                    showarrow=True,
                    font=dict(family="Courier New, monospace", size=18, color="#ffffff"),
                    align="center",
                    arrowhead=2,
                    arrowsize=1,
                    arrowwidth=2,
                    arrowcolor="#636363",
                    ax=20,
                    ay=-30,
                    bordercolor="#c7c7c7",
                    borderwidth=2,
                    borderpad=4,
                    bgcolor="#ff7f0e",
                    opacity=0.8
                )
            
            # Update traces for styling
            fig_total_attempts.update_traces(marker=dict(size=12), selector=dict(mode='markers+text'))
            
            # Display the scatter plot in Streamlit
            st.plotly_chart(fig_total_attempts, use_container_width=True)

        # Chart 2 (students only): Personal scores over time
        if username != 'admin':
            # Sort the DataFrame by 'date' in chronological order
            df_selection = df_selection.sort_values(by='date')
            #fig = px.bar(df_selection, x='date', y='global_score', title='Your scores!')
    
            if len(df_selection) > 1:
                # # If more than one point, use a bar chart
                # fig = px.bar(df_selection, x='date', y='global_score', title='Global Score Over Time')
                # # fig.update_yaxes(
                # #     tickmode='array',
                # #     tickvals=[1, 2, 3, 4, 5], # Reverse the order of tickvals
                # #     ticktext=['A', 'B','C','D','E'] # Reverse the order of ticktext
                # # )
                # Mapping dictionary
                grade_to_score = {'A': 100, 'B': 80, 'C': 60, 'D': 40, 'E': 20}

                # Apply mapping to convert letter grades to numerical scores
                df_selection['numeric_score'] = df_selection['global_score'].map(grade_to_score)

                # Sort the DataFrame by 'date' in chronological order
                df_selection = df_selection.sort_values(by='date')

                # Check if there's more than one point in the DataFrame
                if len(df_selection) > 1:
                    # Create a bar chart using Plotly Express
                    fig = px.bar(df_selection, x='date', y='numeric_score', title='Your scores over time')
                else:
                    # Create a bar chart with just one point
                    fig = px.bar(df_selection, x='date', y='numeric_score', title='Global Score')

                # Manually set the y-axis ticks and labels
                fig.update_yaxes(
                    tickmode='array',
                    tickvals=list(grade_to_score.values()),  # Positions for the ticks
                    ticktext=list(grade_to_score.keys()),  # Text labels for the ticks
                    range=[0, 120]  # Extend the range a bit beyond 100 to accommodate 'A'
                )

                # # Use st.plotly_chart to display the chart in Streamlit
                # st.plotly_chart(fig, use_container_width=True)

            else:
                # For a single point, use a scatter plot
                fig = px.scatter(df_selection, x='date', y='global_score', title='Global Score',
                                text='global_score', size_max=60)
                # Add text annotation
                for line in range(0,df_selection.shape[0]):
                    fig.add_annotation(text=df_selection['global_score'].iloc[line],
                                        x=df_selection['date'].iloc[line], y=df_selection['global_score'].iloc[line],
                                        showarrow=True, font=dict(family="Courier New, monospace", size=18, color="#ffffff"),
                                        align="center", arrowhead=2, arrowsize=1, arrowwidth=2, arrowcolor="#636363",
                                        ax=20, ay=-30, bordercolor="#c7c7c7", borderwidth=2, borderpad=4, bgcolor="#ff7f0e",
                                        opacity=0.8)
                fig.update_traces(marker=dict(size=12), selector=dict(mode='markers+text'))

            # Display the chart in Streamlit
            st.plotly_chart(fig, use_container_width=True)

            # Show students their scores over time 
            st.dataframe(df_selection[['date', 'global_score', 'name']])
        

        # Chart 3 (admin only): Global score chart    
        # Define the order of categories explicitly
        order_of_categories = ['A', 'B', 'C', 'D', 'E']

        # Convert global_score to a categorical type with the specified order
        df_selection['global_score'] = pd.Categorical(df_selection['global_score'], categories=order_of_categories, ordered=True)

        # Plot the histogram
        fig_score_distribution = px.histogram(
            df_selection, 
            x="global_score", 
            title="<b>Global Score Distribution</b>",
            color_discrete_sequence=["#33CFA5"],
            category_orders={"global_score": ["A", "B", "C", "D", "E"]}
        )
        if username == 'admin':
            st.plotly_chart(fig_score_distribution, use_container_width=True)
        

        # Chart 4 (admin only): Students with <5 attempts (filtered)
        if username == 'admin':
            students_with_less_than_5_attempts = total_attempts_by_name[total_attempts_by_name['total_attempts'] < 5]
            fig_less_than_5_attempts = px.bar(
                students_with_less_than_5_attempts,
                x="name",
                y="total_attempts",
                title="<b>Students with <5 Attempts</b>",
                color_discrete_sequence=["#D62728"] * len(students_with_less_than_5_attempts),
                template="plotly_white",
            )

        if username == 'admin':
            st.plotly_chart(fig_less_than_5_attempts, use_container_width=True)


        # Selection of a student for detailed view (<5 attempts) - based on filtered data
        if username == 'admin':    
            selected_student_less_than_5 = st.selectbox("Select a student with less than 5 attempts to view details:", students_with_less_than_5_attempts['name'])
            if selected_student_less_than_5:
                st.write(df_selection[df_selection['name'] == selected_student_less_than_5])

        # Chart 5 (admin only): Students with at least one global score of 'C', 'D', 'E' (filtered)
        if username == 'admin':  
            students_with_cde = df_selection[df_selection['global_score'].isin(['C', 'D', 'E'])].groupby("name")['date'].count().reset_index()
            students_with_cde.columns = ['name', 'total_attempts']
            fig_students_with_cde = px.bar(
                students_with_cde,
                x="name",
                y="total_attempts",
                title="<b>Students with at least one global score of 'C', 'D', 'E'</b>",
                color_discrete_sequence=["#FF7F0E"] * len(students_with_cde),
                template="plotly_white",
            )
            st.plotly_chart(fig_students_with_cde, use_container_width=True)

        # Selection of a student for detailed view (score of 'C', 'D', 'E') - based on filtered data
        if username == 'admin':
            selected_student_cde = st.selectbox("Select a student with at least one score of 'C', 'D', 'E' to view details:", students_with_cde['name'])
            if selected_student_cde:
                st.write(df_selection[df_selection['name'] == selected_student_cde])

    # Chart 7 (all): Radar Chart

        # Mapping grades to numeric values
        grade_to_numeric = {'A': 90, 'B': 70, 'C': 50, 'D': 30, 'E': 10}
        df.replace(grade_to_numeric, inplace=True)

        # Calculate average numeric scores for each category
        average_scores = df.groupby('name')[['hx_PC_score', 'hx_AS_score', 'hx_others_score', 'differentials_score']].mean().reset_index()

        if username == 'admin':
            st.title('Average Scores Radar Chart')
        else:
            st.title('Performance in each segment as compared to your friends!')

        # Categories for the radar chart
        categories = ['Presenting complaint', 'Associated symptoms', '(Others)', 'Differentials']

        st.markdown("""
        ###
        Double click on the names in the legend to include/exclude them from the plot.
        """)


        # Custom colors for better contrast
        colors = ['gold', 'cyan', 'magenta', 'green']

        # Plotly Radar Chart
        fig = go.Figure()

        for index, row in average_scores.iterrows():
            fig.add_trace(go.Scatterpolar(
                r=[row['hx_PC_score'], row['hx_AS_score'], row['hx_others_score'], row['differentials_score']],
                theta=categories,
                fill='toself',
                name=row['name'],
                line=dict(color=colors[index % len(colors)])
            ))

        fig.update_layout(
            polar=dict(
                radialaxis=dict(
                    visible=True,
                    range=[0, 100],  # Numeric range
                    tickvals=[10, 30, 50, 70, 90],  # Positions for the grade labels
                    ticktext=['E', 'D', 'C', 'B', 'A']  # Grade labels
                )),
            showlegend=True,
            height=600,  # Set the height of the figure
            width=600    # Set the width of the figure
        )

        # Display the figure in Streamlit
        st.plotly_chart(fig, use_container_width=True)