File size: 14,771 Bytes
e17bf8a
 
 
 
 
 
 
 
 
 
 
 
 
8687f86
 
e17bf8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7fd01f
 
 
 
 
 
 
 
e17bf8a
e0cfe13
 
1174165
 
 
 
 
e17bf8a
8687f86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e17bf8a
 
 
 
 
 
 
 
 
8687f86
 
e17bf8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8687f86
e17bf8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8dd7b5f
 
 
 
 
e17bf8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8dd7b5f
 
 
e17bf8a
 
 
 
 
 
 
 
 
 
 
 
 
 
8687f86
e17bf8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8687f86
e17bf8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8dd7b5f
 
 
 
 
e17bf8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8dd7b5f
 
 
e17bf8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d990d2
 
 
 
 
 
e17bf8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d990d2
e17bf8a
 
4d990d2
e17bf8a
 
 
 
 
 
 
 
 
 
 
 
 
4d990d2
e17bf8a
4d990d2
e17bf8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8687f86
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
from openai import OpenAI
import streamlit as st
import streamlit.components.v1 as components
import datetime


## Firestore ??
import os
import sys
import inspect
currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
parentdir = os.path.dirname(currentdir)
sys.path.append(parentdir)
import db_firestore as db


## ----------------------------------------------------------------
## LLM Part
import openai
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
import tiktoken
from langchain.prompts.few_shot import FewShotPromptTemplate
from langchain.prompts.prompt import PromptTemplate
from operator import itemgetter
from langchain.schema import StrOutputParser
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough

import langchain_community.embeddings.huggingface
from langchain_community.embeddings.huggingface import HuggingFaceBgeEmbeddings
from langchain_community.vectorstores import FAISS

from langchain.chains import LLMChain
from langchain.chains.conversation.memory import ConversationBufferMemory, ConversationBufferWindowMemory, ConversationSummaryMemory, ConversationSummaryBufferMemory

import os, dotenv
from dotenv import load_dotenv
load_dotenv()

if not os.path.isdir("../.streamlit"):
    os.mkdir("../.streamlit")
    print('made streamlit folder')
if not os.path.isfile("../.streamlit/secrets.toml"):
    with open("../.streamlit/secrets.toml", "w") as f:
        f.write(os.environ.get("STREAMLIT_SECRETS"))
    print('made new file')
    

import db_firestore as db

## Load from streamlit!!
os.environ["HF_TOKEN"] = os.environ.get("HF_TOKEN") or st.secrets["HF_TOKEN"]
os.environ["OPENAI_API_KEY"] = os.environ.get("OPENAI_API_KEY") or st.secrets["OPENAI_API_KEY"]
os.environ["FIREBASE_CREDENTIAL"] = os.environ.get("FIREBASE_CREDENTIAL") or st.secrets["FIREBASE_CREDENTIAL"]



st.title("UAT for PatientLLM and GraderLLM")

## Hardcode indexes for now, 
indexes = """Bleeding
ChestPain
Dysphagia
Headache
ShortnessOfBreath
Vomiting
Warfarin
Weakness
Weakness2""".split("\n")

if "selected_index" not in st.session_state:
    st.session_state.selected_index = 3
    
if "index_selectbox" not in st.session_state:
    st.session_state.index_selectbox = "Headache"

index_selectbox = st.selectbox("Select index",indexes, index=int(st.session_state.selected_index))

if index_selectbox != indexes[st.session_state.selected_index]:
    st.session_state.selected_index = indexes.index(index_selectbox)
    st.session_state.index_selectbox = index_selectbox
    del st.session_state["store"]
    del st.session_state["store2"]
    del st.session_state["retriever"]
    del st.session_state["retriever2"]
    del st.session_state["chain"]
    del st.session_state["chain2"]



if "openai_model" not in st.session_state:
    st.session_state["openai_model"] = "gpt-3.5-turbo"

if "messages_1" not in st.session_state:
    st.session_state.messages_1 = []

if "messages_2" not in st.session_state:
    st.session_state.messages_2 = []

# if "start_time" not in st.session_state:
#     st.session_state.start_time = None

if "active_chat" not in st.session_state:
    st.session_state.active_chat = 1

model_name = "bge-large-en-v1.5"
model_kwargs = {"device": "cpu"}
# model_kwargs = {"device": "cuda"}
encode_kwargs = {"normalize_embeddings": True}
if "embeddings" not in st.session_state:
    st.session_state.embeddings = HuggingFaceBgeEmbeddings(
        # model_name=model_name, 
        model_kwargs = model_kwargs,
        encode_kwargs = encode_kwargs)
embeddings = st.session_state.embeddings
if "llm" not in st.session_state:
    st.session_state.llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0)
llm = st.session_state.llm
if "llm_gpt4" not in st.session_state:
    st.session_state.llm_gpt4 = ChatOpenAI(model_name="gpt-4-1106-preview", temperature=0)
llm_gpt4 = st.session_state.llm_gpt4

## ------------------------------------------------------------------------------------------------
## Patient part

index_name = f"indexes/{st.session_state.index_selectbox}/QA"

if "store" not in st.session_state:
    st.session_state.store = db.get_store(index_name, embeddings=embeddings)
store = st.session_state.store

TEMPLATE = """You are a patient undergoing a medical check-up. You will be given the following:
1. A context to answer the doctor, for your possible symptoms.
2. A question about your current symptoms.

Your task is to answer the doctor's questions as simple as possible, acting like a patient.
Do not include other symptoms that are not included in the context, which provides your symptoms.

Answer the question to the point, without any elaboration if you're not prodded with it.

As you are a patient, you do not know any medical jargon or lingo. Do not include specific medical terms in your reply.
You only know colloquial words for medical terms. 
For example, you should not reply with "dysarthria", but instead with "cannot speak properly". 
For example, you should not reply with "syncope", but instead with "fainting". 

Here is the context:
{context}

----------------------------------------------------------------
You are to reply the doctor's following question, with reference to the above context.
Question:
{question}
----------------------------------------------------------------
Remember, answer in a short and sweet manner, don't talk too much.
Your reply:
"""
if "TEMPLATE" not in st.session_state:
    st.session_state.TEMPLATE = TEMPLATE

with st.expander("Patient Prompt"):
    TEMPLATE = st.text_area("Patient Prompt", value=TEMPLATE)

prompt = PromptTemplate(
    input_variables = ["question", "context"],
    template = TEMPLATE
)
if "retriever" not in st.session_state:
    st.session_state.retriever = store.as_retriever(search_type="similarity", search_kwargs={"k":2})
retriever = st.session_state.retriever

def format_docs(docs):
    return "\n--------------------\n".join(doc.page_content for doc in docs)


if "memory" not in st.session_state:
    st.session_state.memory = ConversationSummaryBufferMemory(llm=llm, memory_key="chat_history", input_key="question" )
memory = st.session_state.memory


if ("chain" not in st.session_state
    or 
    st.session_state.TEMPLATE != TEMPLATE):
    st.session_state.chain = (
    {
        "context": retriever | format_docs, 
        "question": RunnablePassthrough()
        } | 
    LLMChain(llm=llm, prompt=prompt, memory=memory, verbose=False)
)
chain = st.session_state.chain

sp_mapper = {"human":"student","ai":"patient"}

## ------------------------------------------------------------------------------------------------
## ------------------------------------------------------------------------------------------------
## Grader part
index_name = f"indexes/{st.session_state.index_selectbox}/Rubric"

# store = FAISS.load_local(index_name, embeddings)

if "store2" not in st.session_state:
    st.session_state.store2 = db.get_store(index_name, embeddings=embeddings)
store2 = st.session_state.store2

TEMPLATE2 = """You are a teacher for medical students. You are grading a medical student on their OSCE, the Object Structured Clinical Examination.

Your task is to provide an overall assessment of a student's diagnosis, based on the rubrics provided.
You will be provided with the following information:
1. The rubrics that the student should be judged based upon.
2. The conversation history between the medical student and the patient.
3. The final diagnosis that the student will make.

=================================================================

Your task is as follows:
1. Your grading should touch on every part of the rubrics, and grade the student holistically.
Finally, provide an overall grade for the student.

Some additional information that is useful to understand the rubrics:
- The rubrics are segmented, with each area separated by dashes, such as "----------" 
- There will be multiple segments on History Taking. For each segment, the rubrics and corresponding grades will be provided below the required history taking.
- For History Taking, you are to grade the student based on the rubrics, by checking the chat history between the patients and the medical student.
- There is an additional segment on Presentation, differentials, and diagnosis. The 


=================================================================

e
Here are the rubrics for grading the student:
<rubrics>

{context}

</rubrics>

=================================================================
You are to give a comprehensive judgement based on the student's diagnosis, with reference to the above rubrics.

Here is the chat history between the medical student and the patient:

<history>

{history}

</history>
=================================================================


Student's final diagnosis:
<diagnosis>
    {question}
</diagnosis>

=================================================================

Your grade:
"""
if "TEMPLATE2" not in st.session_state:
    st.session_state.TEMPLATE2 = TEMPLATE2

with st.expander("Grader Prompt"):
    TEMPLATE2 = st.text_area("Grader Prompt", value=TEMPLATE2)

prompt2 = PromptTemplate(
    input_variables = ["question", "context", "history"],
    template = TEMPLATE2
)
if "retriever2" not in st.session_state:
    st.session_state.retriever2 = store2.as_retriever(search_type="similarity", search_kwargs={"k":2})
retriever2 = st.session_state.retriever2

def format_docs(docs):
    return "\n--------------------\n".join(doc.page_content for doc in docs)


fake_history = '\n'.join([(sp_mapper.get(i.type, i.type) + ": "+ i.content) for i in memory.chat_memory.messages])

if "memory2" not in st.session_state:
    st.session_state.memory2 = ConversationSummaryBufferMemory(llm=llm, memory_key="chat_history", input_key="question" )
memory2 = st.session_state.memory2

def x(_): 
    return fake_history

if ("chain2" not in st.session_state
    or 
    st.session_state.TEMPLATE2 != TEMPLATE2):
    st.session_state.chain2 = (
    {
        "context": retriever | format_docs, 
        "history": x,
        "question": RunnablePassthrough(),
        } | 

    LLMChain(llm=llm, prompt=prompt2, memory=memory, verbose=False)
)
chain2 = st.session_state.chain2

## ------------------------------------------------------------------------------------------------
## ------------------------------------------------------------------------------------------------
## Streamlit now

# from dotenv import load_dotenv
# import os
# load_dotenv()
# key = os.environ.get("OPENAI_API_KEY")
# client = OpenAI(api_key=key)


if st.button("Clear History and Memory", type="primary"):
    st.session_state.messages_1 = []
    st.session_state.messages_2 = []
    st.session_state.memory = ConversationSummaryBufferMemory(llm=llm, memory_key="chat_history", input_key="question" )
    memory = st.session_state.memory

## Testing HTML
# html_string = """
# <canvas></canvas>


# <script>
#     canvas = document.querySelector('canvas');
#     canvas.width = 1024;
#     canvas.height = 576;
#     console.log(canvas);

#     const c = canvas.getContext('2d');
#     c.fillStyle = "green";
#     c.fillRect(0,0,canvas.width,canvas.height);

#     const img = new Image();
#     img.src = "./tksfordumtrive.png";
#     c.drawImage(img,  10, 10);
# </script>

# <style>
#     body {
#         margin: 0;
#     }
# </style>
# """
# components.html(html_string,
#                 width=1280,
#                 height=640)


st.write("Timer has been removed, switch with this button")

if st.button(f"Switch to {'PATIENT' if st.session_state.active_chat==2 else 'GRADER'}"+".... Buggy button, please double click"):
    st.session_state.active_chat = 3 - st.session_state.active_chat

# st.write("Currently in " + ('PATIENT' if st.session_state.active_chat==2 else 'GRADER'))

# Create two columns for the two chat interfaces
col1, col2 = st.columns(2)

# First chat interface
with col1:
    st.subheader("Student LLM")
    for message in st.session_state.messages_1:
        with st.chat_message(message["role"]):
            st.markdown(message["content"])

# Second chat interface
with col2:
    # st.write("pls dun spam this, its tons of tokens cos chat history")
    st.subheader("Grader LLM")
    st.write("grader takes a while to load... please be patient")
    for message in st.session_state.messages_2:
        with st.chat_message(message["role"]):
            st.markdown(message["content"])

# Timer and Input
# time_left = None
# if st.session_state.start_time:
#     time_elapsed = datetime.datetime.now() - st.session_state.start_time
#     time_left = datetime.timedelta(minutes=10) - time_elapsed
#     st.write(f"Time left: {time_left}")

# if time_left is None or time_left > datetime.timedelta(0):
#     # Chat 1 is active
#     prompt = st.text_input("Enter your message for Chat 1:")
#     active_chat = 1
#     messages = st.session_state.messages_1
# elif time_left and time_left <= datetime.timedelta(0):
#     # Chat 2 is active
#     prompt = st.text_input("Enter your message for Chat 2:")
#     active_chat = 2
#     messages = st.session_state.messages_2

if st.session_state.active_chat==1:
    text_prompt = st.text_input("Enter your message for PATIENT")
    messages = st.session_state.messages_1
else:
    text_prompt = st.text_input("Enter your message for GRADER")
    messages = st.session_state.messages_2


if text_prompt:
    messages.append({"role": "user", "content": text_prompt})
    
    with (col1 if st.session_state.active_chat == 1 else col2):
        with st.chat_message("user"):
            st.markdown(text_prompt)
    
    with (col1 if st.session_state.active_chat == 1 else col2):
        with st.chat_message("assistant"):
            message_placeholder = st.empty()
            if st.session_state.active_chat==1:
                full_response = chain.invoke(text_prompt).get("text")
            else:
                full_response = chain2.invoke(text_prompt).get("text")
            message_placeholder.markdown(full_response)
            messages.append({"role": "assistant", "content": full_response})


# import streamlit as st
# import time
# def count_down(ts):
#     with st.empty():
#         while ts:
#             mins, secs = divmod(ts, 60)
#             time_now = '{:02d}:{:02d}'.format(mins, secs)
#             st.header(f"{time_now}")
#             time.sleep(1)
#             ts -= 1
# st.write("Time Up!")
# def main():
#     st.title("Pomodoro")
#     time_minutes = st.number_input('Enter the time in minutes ', min_value=1, value=25)
#     time_in_seconds = time_minutes * 60
#     if st.button("START"):
#             count_down(int(time_in_seconds))
# if __name__ == '__main__':
#     main()