Spaces:
Runtime error
Runtime error
File size: 40,328 Bytes
bc4dcba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 |
from openai import OpenAI
import streamlit as st
import streamlit.components.v1 as components
import datetime, time
from dataclasses import dataclass
import math
import base64
## Firestore ??
import os
# import sys
# import inspect
# currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
# parentdir = os.path.dirname(currentdir)
# sys.path.append(parentdir)
# ## ----------------------------------------------------------------
# ## LLM Part
import openai
from langchain_openai import ChatOpenAI, OpenAI, OpenAIEmbeddings
import tiktoken
from langchain.prompts.few_shot import FewShotPromptTemplate
from langchain.prompts.prompt import PromptTemplate
from operator import itemgetter
from langchain.schema import StrOutputParser
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
import langchain_community.embeddings.huggingface
from langchain_community.embeddings.huggingface import HuggingFaceBgeEmbeddings
from langchain_community.vectorstores import FAISS
from langchain.chains import LLMChain
from langchain.chains.conversation.memory import ConversationBufferWindowMemory #, ConversationBufferMemory, ConversationSummaryMemory, ConversationSummaryBufferMemory
import os, dotenv
from dotenv import load_dotenv
load_dotenv()
if not os.path.isdir("./.streamlit"):
os.mkdir("./.streamlit")
print('made streamlit folder')
if not os.path.isfile("./.streamlit/secrets.toml"):
with open("./.streamlit/secrets.toml", "w") as f:
f.write(os.environ.get("STREAMLIT_SECRETS"))
print('made new file')
import db_firestore as db
## Load from streamlit!!
os.environ["HF_TOKEN"] = os.environ.get("HF_TOKEN") or st.secrets["HF_TOKEN"]
os.environ["OPENAI_API_KEY"] = os.environ.get("OPENAI_API_KEY") or st.secrets["OPENAI_API_KEY"]
os.environ["FIREBASE_CREDENTIAL"] = os.environ.get("FIREBASE_CREDENTIAL") or st.secrets["FIREBASE_CREDENTIAL"]
if "openai_model" not in st.session_state:
st.session_state["openai_model"] = "gpt-3.5-turbo-1106"
## Hardcode indexes for now
## TODO: Move indexes to firebase
indexes = """Bleeding
ChestPain
Dysphagia
Headache
ShortnessOfBreath
Vomiting
Weakness
Weakness2""".split("\n")
# if "selected_index" not in st.session_state:
# st.session_state.selected_index = 3
# if "index_selectbox" not in st.session_state:
# st.session_state.index_selectbox = "Headache"
# index_selectbox = st.selectbox("Select index",indexes, index=int(st.session_state.selected_index))
# if index_selectbox != indexes[st.session_state.selected_index]:
# st.session_state.selected_index = indexes.index(index_selectbox)
# st.session_state.index_selectbox = index_selectbox
# del st.session_state["store"]
# del st.session_state["store2"]
# del st.session_state["retriever"]
# del st.session_state["retriever2"]
# del st.session_state["chain"]
# del st.session_state["chain2"]
model_name = "bge-large-en-v1.5"
model_kwargs = {"device": "cpu"}
encode_kwargs = {"normalize_embeddings": True}
if "embeddings" not in st.session_state:
st.session_state.embeddings = HuggingFaceBgeEmbeddings(
# model_name=model_name,
model_kwargs = model_kwargs,
encode_kwargs = encode_kwargs)
embeddings = st.session_state.embeddings
if "llm" not in st.session_state:
st.session_state.llm = ChatOpenAI(model_name="gpt-3.5-turbo-1106", temperature=0)
llm = st.session_state.llm
if "llm_i" not in st.session_state:
st.session_state.llm_i = OpenAI(model_name="gpt-3.5-turbo-instruct", temperature=0)
llm_i = st.session_state.llm_i
if "llm_gpt4" not in st.session_state:
st.session_state.llm_gpt4 = ChatOpenAI(model_name="gpt-4-1106-preview", temperature=0)
llm_gpt4 = st.session_state.llm_gpt4
# ## ------------------------------------------------------------------------------------------------
# ## Patient part
# index_name = f"indexes/{st.session_state.index_selectbox}/QA"
# if "store" not in st.session_state:
# st.session_state.store = db.get_store(index_name, embeddings=embeddings)
# store = st.session_state.store
if "TEMPLATE" not in st.session_state:
with open('templates/patient.txt', 'r') as file:
TEMPLATE = file.read()
st.session_state.TEMPLATE = TEMPLATE
TEMPLATE = st.session_state.TEMPLATE
# with st.expander("Patient Prompt"):
# TEMPLATE = st.text_area("Patient Prompt", value=st.session_state.TEMPLATE)
prompt = PromptTemplate(
input_variables = ["question", "context"],
template = st.session_state.TEMPLATE
)
# if "retriever" not in st.session_state:
# st.session_state.retriever = store.as_retriever(search_type="similarity", search_kwargs={"k":2})
# retriever = st.session_state.retriever
def format_docs(docs):
return "\n--------------------\n".join(doc.page_content for doc in docs)
# if "memory" not in st.session_state:
# st.session_state.memory = ConversationBufferWindowMemory(
# llm=llm, memory_key="chat_history", input_key="question",
# k=5, human_prefix="student", ai_prefix="patient",)
# memory = st.session_state.memory
# if ("chain" not in st.session_state
# or
# st.session_state.TEMPLATE != TEMPLATE):
# st.session_state.chain = (
# {
# "context": retriever | format_docs,
# "question": RunnablePassthrough()
# } |
# LLMChain(llm=llm, prompt=prompt, memory=memory, verbose=False)
# )
# chain = st.session_state.chain
sp_mapper = {"human":"student","ai":"patient", "user":"student","assistant":"patient"}
# ## ------------------------------------------------------------------------------------------------
# ## ------------------------------------------------------------------------------------------------
# ## Grader part
# index_name = f"indexes/{st.session_state.index_selectbox}/Rubric"
# if "store2" not in st.session_state:
# st.session_state.store2 = db.get_store(index_name, embeddings=embeddings)
# store2 = st.session_state.store2
if "TEMPLATE2" not in st.session_state:
with open('templates/grader.txt', 'r') as file:
TEMPLATE2 = file.read()
st.session_state.TEMPLATE2 = TEMPLATE2
TEMPLATE2 = st.session_state.TEMPLATE2
# with st.expander("Grader Prompt"):
# TEMPLATE2 = st.text_area("Grader Prompt", value=st.session_state.TEMPLATE2)
prompt2 = PromptTemplate(
input_variables = ["question", "context", "history"],
template = st.session_state.TEMPLATE2
)
def get_patient_chat_history(_):
return st.session_state.get("patient_chat_history")
# if "retriever2" not in st.session_state:
# st.session_state.retriever2 = store2.as_retriever(search_type="similarity", search_kwargs={"k":2})
# retriever2 = st.session_state.retriever2
# def format_docs(docs):
# return "\n--------------------\n".join(doc.page_content for doc in docs)
# fake_history = '\n'.join([(sp_mapper.get(i.type, i.type) + ": "+ i.content) for i in memory.chat_memory.messages])
# fake_history = '\n'.join([(sp_mapper.get(i['role'], i['role']) + ": "+ i['content']) for i in st.session_state.messages_1])
# st.write(fake_history)
# def y(_):
# return fake_history
# if ("chain2" not in st.session_state
# or
# st.session_state.TEMPLATE2 != TEMPLATE2):
# st.session_state.chain2 = (
# {
# "context": retriever2 | format_docs,
# "history": y,
# "question": RunnablePassthrough(),
# } |
# # LLMChain(llm=llm_i, prompt=prompt2, verbose=False ) #|
# LLMChain(llm=llm_gpt4, prompt=prompt2, verbose=False ) #|
# | {
# "json": itemgetter("text"),
# "text": (
# LLMChain(
# llm=llm,
# prompt=PromptTemplate(
# input_variables=["text"],
# template="Interpret the following JSON of the student's grades, and do a write-up for each section.\n\n```json\n{text}\n```"),
# verbose=False)
# )
# }
# )
# chain2 = st.session_state.chain2
# ## ------------------------------------------------------------------------------------------------
# ## ------------------------------------------------------------------------------------------------
# ## Streamlit now
# # from dotenv import load_dotenv
# # import os
# # load_dotenv()
# # key = os.environ.get("OPENAI_API_KEY")
# # client = OpenAI(api_key=key)
# if st.button("Clear History and Memory", type="primary"):
# st.session_state.messages_1 = []
# st.session_state.messages_2 = []
# st.session_state.memory = ConversationBufferWindowMemory(llm=llm, memory_key="chat_history", input_key="question" )
# memory = st.session_state.memory
# ## Testing HTML
# # html_string = """
# # <canvas></canvas>
# # <script>
# # canvas = document.querySelector('canvas');
# # canvas.width = 1024;
# # canvas.height = 576;
# # console.log(canvas);
# # const c = canvas.getContext('2d');
# # c.fillStyle = "green";
# # c.fillRect(0,0,canvas.width,canvas.height);
# # const img = new Image();
# # img.src = "./tksfordumtrive.png";
# # c.drawImage(img, 10, 10);
# # </script>
# # <style>
# # body {
# # margin: 0;
# # }
# # </style>
# # """
# # components.html(html_string,
# # width=1280,
# # height=640)
# st.write("Timer has been removed, switch with this button")
# if st.button(f"Switch to {'PATIENT' if st.session_state.active_chat==2 else 'GRADER'}"+".... Buggy button, please double click"):
# st.session_state.active_chat = 3 - st.session_state.active_chat
# # st.write("Currently in " + ('PATIENT' if st.session_state.active_chat==2 else 'GRADER'))
# # Create two columns for the two chat interfaces
# col1, col2 = st.columns(2)
# # First chat interface
# with col1:
# st.subheader("Student LLM")
# for message in st.session_state.messages_1:
# with st.chat_message(message["role"]):
# st.markdown(message["content"])
# # Second chat interface
# with col2:
# # st.write("pls dun spam this, its tons of tokens cos chat history")
# st.subheader("Grader LLM")
# st.write("grader takes a while to load... please be patient")
# for message in st.session_state.messages_2:
# with st.chat_message(message["role"]):
# st.markdown(message["content"])
# # Timer and Input
# # time_left = None
# # if st.session_state.start_time:
# # time_elapsed = datetime.datetime.now() - st.session_state.start_time
# # time_left = datetime.timedelta(minutes=10) - time_elapsed
# # st.write(f"Time left: {time_left}")
# # if time_left is None or time_left > datetime.timedelta(0):
# # # Chat 1 is active
# # prompt = st.text_input("Enter your message for Chat 1:")
# # active_chat = 1
# # messages = st.session_state.messages_1
# # elif time_left and time_left <= datetime.timedelta(0):
# # # Chat 2 is active
# # prompt = st.text_input("Enter your message for Chat 2:")
# # active_chat = 2
# # messages = st.session_state.messages_2
# if st.session_state.active_chat==1:
# text_prompt = st.text_input("Enter your message for PATIENT")
# messages = st.session_state.messages_1
# else:
# text_prompt = st.text_input("Enter your message for GRADER")
# messages = st.session_state.messages_2
# from langchain.callbacks.manager import tracing_v2_enabled
# from uuid import uuid4
# import os
# if text_prompt:
# messages.append({"role": "user", "content": text_prompt})
# with (col1 if st.session_state.active_chat == 1 else col2):
# with st.chat_message("user"):
# st.markdown(text_prompt)
# with (col1 if st.session_state.active_chat == 1 else col2):
# with st.chat_message("assistant"):
# message_placeholder = st.empty()
# if True: ## with tracing_v2_enabled(project_name = "streamlit"):
# if st.session_state.active_chat==1:
# full_response = chain.invoke(text_prompt).get("text")
# else:
# full_response = chain2.invoke(text_prompt).get("text").get("text")
# message_placeholder.markdown(full_response)
# messages.append({"role": "assistant", "content": full_response})
# st.write('fake history is:')
# st.write(y(""))
# st.write('done')
## ====================
if not st.session_state.get("scenario_list", None):
st.session_state.scenario_list = indexes
def init_patient_llm():
if "messages_1" not in st.session_state:
st.session_state.messages_1 = []
## messages 2?
index_name = f"indexes/{st.session_state.scenario_list[st.session_state.selected_scenario]}/QA"
if "store" not in st.session_state:
st.session_state.store = db.get_store(index_name, embeddings=embeddings)
if "retriever" not in st.session_state:
st.session_state.retriever = st.session_state.store.as_retriever(search_type="similarity", search_kwargs={"k":2})
if "memory" not in st.session_state:
st.session_state.memory = ConversationBufferWindowMemory(
llm=llm, memory_key="chat_history", input_key="question",
k=5, human_prefix="student", ai_prefix="patient",)
if ("chain" not in st.session_state
or
st.session_state.TEMPLATE != TEMPLATE):
st.session_state.chain = (
{
"context": st.session_state.retriever | format_docs,
"question": RunnablePassthrough()
} |
LLMChain(llm=llm, prompt=prompt, memory=st.session_state.memory, verbose=False)
)
def init_grader_llm():
## Grader
index_name = f"indexes/{st.session_state.scenario_list[st.session_state.selected_scenario]}/Rubric"
## Reset time
st.session_state.start_time = False
if "store2" not in st.session_state:
st.session_state.store2 = db.get_store(index_name, embeddings=embeddings)
if "retriever2" not in st.session_state:
st.session_state.retriever2 = st.session_state.store2.as_retriever(search_type="similarity", search_kwargs={"k":2})
## Re-init history
st.session_state["patient_chat_history"] = "History\n" + '\n'.join([(sp_mapper.get(i.type, i.type) + ": "+ i.content) for i in st.session_state.memory.chat_memory.messages])
if ("chain2" not in st.session_state
or
st.session_state.TEMPLATE2 != TEMPLATE2):
st.session_state.chain2 = (
{
"context": st.session_state.retriever2 | format_docs,
"history": (get_patient_chat_history),
"question": RunnablePassthrough(),
} |
# LLMChain(llm=llm_i, prompt=prompt2, verbose=False ) #|
LLMChain(llm=llm_gpt4, prompt=prompt2, verbose=False ) #|
| {
"json": itemgetter("text"),
"text": (
LLMChain(
llm=llm,
prompt=PromptTemplate(
input_variables=["text"],
template="Interpret the following JSON of the student's grades, and do a write-up for each section.\n\n```json\n{text}\n```"),
verbose=False)
)
}
)
login_info = {
"bob":"builder",
"student1": "password",
"admin":"admin"
}
def set_username(x):
st.session_state.username = x
def validate_username(username, password):
if login_info.get(username) == password:
set_username(username)
else:
st.warning("Wrong username or password")
return None
if not st.session_state.get("username"):
## ask to login
st.title("Login")
username = st.text_input("Username:")
password = st.text_input("Password:", type="password")
login_button = st.button("Login", on_click=validate_username, args=[username, password])
else:
if True: ## Says hello and logout
col_1, col_2 = st.columns([1,3])
col_2.title(f"Hello there, {st.session_state.username}")
# Display logout button
if col_1.button('Logout'):
# Remove username from session state
del st.session_state.username
# Rerun the app to go back to the login view
st.rerun()
scenario_tab, dashboard_tab = st.tabs(["Training", "Dashboard"])
# st.header("head")
# st.markdown("## markdown")
# st.caption("caption")
# st.divider()
# import pandas as pd
# import numpy as np
# map_data = pd.DataFrame(
# np.random.randn(1000, 2) / [50, 50] + [37.76, -122.4],
# columns=['lat', 'lon'])
# st.map(map_data)
class ScenarioTabIndex:
SELECT_SCENARIO = 0
PATIENT_LLM = 1
GRADER_LLM = 2
def set_scenario_tab_index(x):
st.session_state.scenario_tab_index=x
return None
def select_scenario_and_change_tab(_):
set_scenario_tab_index(ScenarioTabIndex.PATIENT_LLM)
def go_to_patient_llm():
selected_scenario = st.session_state.get('selected_scenario')
if selected_scenario is None or selected_scenario < 0:
st.warning("Please select a scenario!")
else:
## TODO: Clear state for time, LLM, Index, etc
states = ["store", "store2","retriever","retriever2","chain","chain2"]
for state_to_del in states:
if state_to_del in st.session_state:
del st.session_state[state_to_del]
init_patient_llm()
set_scenario_tab_index(ScenarioTabIndex.PATIENT_LLM)
if not st.session_state.get("scenario_tab_index"):
set_scenario_tab_index(ScenarioTabIndex.SELECT_SCENARIO)
with scenario_tab:
## Check in select scenario
if st.session_state.scenario_tab_index == ScenarioTabIndex.SELECT_SCENARIO:
def change_scenario(scenario_index):
st.session_state.selected_scenario = scenario_index
if st.session_state.get("selected_scenario", None) is None:
st.session_state.selected_scenario = -1
total_cols = 3
rows = list()
# for _ in range(0, number_of_indexes, total_cols):
# rows.extend(st.columns(total_cols))
st.header(f"Selected Scenario: {st.session_state.scenario_list[st.session_state.selected_scenario] if st.session_state.selected_scenario>=0 else 'None'}")
for i, scenario in enumerate(st.session_state.scenario_list):
if i % total_cols == 0:
rows.extend(st.columns(total_cols))
curr_col = rows[(-total_cols + i % total_cols)]
tile = curr_col.container(height=120)
## TODO: Implement highlight box if index is selected
# if st.session_state.selected_scenario == i:
# tile.markdown("<style>background: pink !important;</style>", unsafe_allow_html=True)
tile.write(":balloon:")
tile.button(label=scenario, on_click=change_scenario, args=[i])
select_scenario_btn = st.button("Select Scenario", on_click=go_to_patient_llm, args=[])
elif st.session_state.scenario_tab_index == ScenarioTabIndex.PATIENT_LLM:
st.header("Patient info")
st.write("Pull the info here!!!")
col1, col2, col3 = st.columns([1,3,1])
with col1:
back_to_scenario_btn = st.button("Back to selection", on_click=set_scenario_tab_index, args=[ScenarioTabIndex.SELECT_SCENARIO])
with col3:
start_timer_button = st.button("START")
with col2:
TIME_LIMIT = 60*10 ## to change to 10 minutes
time.sleep(1)
if start_timer_button:
st.session_state.start_time = datetime.datetime.now()
# st.session_state.time = -1 if not st.session_state.get('time') else st.session_state.get('time')
st.session_state.start_time = False if not st.session_state.get('start_time') else st.session_state.start_time
from streamlit.components.v1 import html
html(f"""
<style>
@import url('https://fonts.googleapis.com/css2?family=Pixelify+Sans&display=swap');
@import url('https://fonts.googleapis.com/css2?family=VT323&display=swap');
@import url('https://fonts.googleapis.com/css2?family=Monofett&display=swap');
</style>
<style>
html {{
font-family: 'Pixelify Sans', monospace, serif;
font-family: 'VT323', monospace, sans-serif;
font-family: 'Monofett', monospace, sans-serif;
font-family: 'Times New Roman', sans-serif;
background-color: #0E1117 !important;
color: RGB(250,250,250);
// border-radius: 25%;
// border: 1px solid #0E1117;
}}
html, body {{
// background-color: transparent !important;
// margin: 10px;
// border: 1px solid pink;
text-align: center;
}}
body {{
background-color: #0E1117;
// margin: 10px;
// border: 1px solid pink;
}}
body #ttime {{
font-weight: bold;
font-family: 'VT323', monospace, sans-serif;
// font-family: 'Pixelify Sans', monospace, serif;
}}
</style>
<div>
<h1>Time left</h1>
<h1 id="ttime"> </h1>
</div>
<script>
var x = setInterval(function() {{
var start_time_str = "{st.session_state.start_time}";
var start_date = new Date(start_time_str);
var curr_date = new Date();
var time_difference = curr_date - start_date;
var time_diff_secs = Math.floor(time_difference / 1000);
var time_left = {TIME_LIMIT} - time_diff_secs;
var mins = Math.floor(time_left / 60);
var secs = time_left % 60;
var fmins = mins.toString().padStart(2, '0');
var fsecs = secs.toString().padStart(2, '0');
console.log("run");
if (start_time_str == "False") {{
document.getElementById("ttime").innerHTML = 'Press "Start" to start!';
clearInterval(x);
}}
else if (time_left <= 0) {{
document.getElementById("ttime").innerHTML = "Time's Up!!!";
clearInterval(x);
}}
else {{
document.getElementById("ttime").innerHTML = `${{fmins}}:${{fsecs}}`;
}}
}}, 999)
</script>
""",
)
with open("./public/char.png", "rb") as f:
contents = f.read()
data_url = base64.b64encode(contents).decode("utf-8")
with open("./public/chars/Male_talk.gif", "rb") as f:
contents = f.read()
patient_url = base64.b64encode(contents).decode("utf-8")
interactive_container = st.container()
user_input_col ,r = st.columns([4,1])
def to_grader_llm():
init_grader_llm()
set_scenario_tab_index(ScenarioTabIndex.GRADER_LLM)
with r:
to_grader_btn = st.button("To Grader", on_click=to_grader_llm)
with user_input_col:
user_inputs = st.text_input("", placeholder="Chat with the patient here!", key="user_inputs")
if user_inputs:
response = st.session_state.chain.invoke(user_inputs).get("text")
st.session_state.patient_response = response
with interactive_container:
html(f"""
<style>
@import url('https://fonts.googleapis.com/css2?family=Pixelify+Sans&display=swap');
</style>
<style>
html {{
font-family: 'Pixelify Sans', monospace, serif;
}}
</style>
<div>
<img src="data:image/png;base64,{data_url}" />
<span id="user_input">You: {st.session_state.get('user_inputs') or ''}</span>
</div>
<div>
<img src="data:image/gif;base64,{patient_url}" /><br/>
<span id="bot_response">{'Patient: '+st.session_state.get('patient_response') if st.session_state.get('patient_response') else '...'}</span>
</div>
""", height=500)
elif st.session_state.scenario_tab_index == ScenarioTabIndex.GRADER_LLM:
st.session_state.grader_output = "" if not st.session_state.get("grader_output") else st.session_state.grader_output
def get_grades():
txt = f"""
<summary>
{st.session_state.diagnosis}
</summary>
<differential-1>
{st.session_state.differential_1}
</differential-1>
<differential-2>
{st.session_state.differential_2}
</differential-2>
<differential-3>
{st.session_state.differential_3}
</differential-3>
"""
response = st.session_state.chain2.invoke(txt)
st.session_state.grader_output = response
st.session_state.has_llm_output = bool(st.session_state.get("grader_output"))
## TODO: False for now, need check llm output!
with st.expander("Your Diagnosis and Differentials", expanded=not st.session_state.has_llm_output):
st.session_state.diagnosis = st.text_area("Input your case summary and **main** diagnosis:", placeholder="This is a young gentleman with significant family history of stroke, and medical history of poorly-controlled hypertension. He presents with acute onset of bitemporal headache associated with dysarthria and meningism symptoms. Important negatives include the absence of focal neurological deficits, ataxia, and recent trauma.")
st.divider()
st.session_state.differential_1 = st.text_input("Differential 1")
st.session_state.differential_2 = st.text_input("Differential 2")
st.session_state.differential_3 = st.text_input("Differential 3")
with st.columns(6)[5]:
send_for_grading = st.button("Get grades!", on_click=get_grades)
with st.expander("Your rubrics", expanded=st.session_state.has_llm_output):
if st.session_state.grader_output:
st.write(st.session_state.grader_output.get("text").get("text"))
# back_btn = st.button("back to LLM?", on_click=set_scenario_tab_index, args=[ScenarioTabIndex.PATIENT_LLM])
back_btn = st.button("New Scenario?", on_click=set_scenario_tab_index, args=[ScenarioTabIndex.SELECT_SCENARIO])
with dashboard_tab:
import dotenv
import firebase_admin, json
from firebase_admin import credentials, storage, firestore
import plotly.express as px
import plotly.graph_objects as go
import pandas as pd
os.environ["FIREBASE_CREDENTIAL"] = dotenv.get_key(dotenv.find_dotenv(), "FIREBASE_CREDENTIAL")
cred = credentials.Certificate(json.loads(os.environ.get("FIREBASE_CREDENTIAL")))
# Initialize Firebase (if not already initialized)
if not firebase_admin._apps:
firebase_admin.initialize_app(cred, {'storageBucket': 'healthhack-store.appspot.com'})
#firebase_admin.initialize_app(cred,{'storageBucket': 'healthhack-store.appspot.com'}) # connecting to firebase
db_client = firestore.client()
docs = db_client.collection("clinical_scores").stream()
# Create a list of dictionaries from the documents
data = []
for doc in docs:
doc_dict = doc.to_dict()
doc_dict['document_id'] = doc.id # In case you need the document ID later
data.append(doc_dict)
# Create a DataFrame
df = pd.DataFrame(data)
username = st.session_state.get("username")
st.title("Dashboard")
# Convert date from string to datetime if it's not already in datetime format
df['date'] = pd.to_datetime(df['date'], errors='coerce')
# Streamlit page configuration
#st.set_page_config(page_title="Interactive Data Dashboard", layout="wide")
# Use df_selection for filtering data based on authenticated user
if username != 'admin':
df_selection = df[df['name'] == username]
else:
df_selection = df # Admin sees all data
# Chart Title: Student Performance Dashboard
st.title(":bar_chart: Student Performance Dashboard")
st.markdown("##")
# Chart 1: Total attempts
if df_selection.empty:
st.error("No data available to display.")
else:
# Total attempts by name (filtered)
total_attempts_by_name = df_selection.groupby("name")['date'].count().reset_index()
total_attempts_by_name.columns = ['name', 'total_attempts']
# For a single point or multiple points, use a scatter plot
fig_total_attempts = px.scatter(
total_attempts_by_name,
x="name",
y="total_attempts",
title="<b>Total Attempts</b>",
size='total_attempts', # Adjust the size of points
color_discrete_sequence=["#0083B8"] * len(total_attempts_by_name),
template="plotly_white",
text='total_attempts' # Display total_attempts as text labels
)
# Add text annotation for each point
for line in range(0, total_attempts_by_name.shape[0]):
fig_total_attempts.add_annotation(
text=str(total_attempts_by_name['total_attempts'].iloc[line]),
x=total_attempts_by_name['name'].iloc[line],
y=total_attempts_by_name['total_attempts'].iloc[line],
showarrow=True,
font=dict(family="Courier New, monospace", size=18, color="#ffffff"),
align="center",
arrowhead=2,
arrowsize=1,
arrowwidth=2,
arrowcolor="#636363",
ax=20,
ay=-30,
bordercolor="#c7c7c7",
borderwidth=2,
borderpad=4,
bgcolor="#ff7f0e",
opacity=0.8
)
# Update traces for styling
fig_total_attempts.update_traces(marker=dict(size=12), selector=dict(mode='markers+text'))
# Display the scatter plot in Streamlit
st.plotly_chart(fig_total_attempts, use_container_width=True)
# Chart 2 (students only): Personal scores over time
if username != 'admin':
# Sort the DataFrame by 'date' in chronological order
df_selection = df_selection.sort_values(by='date')
#fig = px.bar(df_selection, x='date', y='global_score', title='Your scores!')
if len(df_selection) > 1:
# # If more than one point, use a bar chart
# fig = px.bar(df_selection, x='date', y='global_score', title='Global Score Over Time')
# # fig.update_yaxes(
# # tickmode='array',
# # tickvals=[1, 2, 3, 4, 5], # Reverse the order of tickvals
# # ticktext=['A', 'B','C','D','E'] # Reverse the order of ticktext
# # )
# Mapping dictionary
grade_to_score = {'A': 100, 'B': 80, 'C': 60, 'D': 40, 'E': 20}
# Apply mapping to convert letter grades to numerical scores
df_selection['numeric_score'] = df_selection['global_score'].map(grade_to_score)
# Sort the DataFrame by 'date' in chronological order
df_selection = df_selection.sort_values(by='date')
# Check if there's more than one point in the DataFrame
if len(df_selection) > 1:
# Create a bar chart using Plotly Express
fig = px.bar(df_selection, x='date', y='numeric_score', title='Your scores over time')
else:
# Create a bar chart with just one point
fig = px.bar(df_selection, x='date', y='numeric_score', title='Global Score')
# Manually set the y-axis ticks and labels
fig.update_yaxes(
tickmode='array',
tickvals=list(grade_to_score.values()), # Positions for the ticks
ticktext=list(grade_to_score.keys()), # Text labels for the ticks
range=[0, 120] # Extend the range a bit beyond 100 to accommodate 'A'
)
# # Use st.plotly_chart to display the chart in Streamlit
# st.plotly_chart(fig, use_container_width=True)
else:
# For a single point, use a scatter plot
fig = px.scatter(df_selection, x='date', y='global_score', title='Global Score',
text='global_score', size_max=60)
# Add text annotation
for line in range(0,df_selection.shape[0]):
fig.add_annotation(text=df_selection['global_score'].iloc[line],
x=df_selection['date'].iloc[line], y=df_selection['global_score'].iloc[line],
showarrow=True, font=dict(family="Courier New, monospace", size=18, color="#ffffff"),
align="center", arrowhead=2, arrowsize=1, arrowwidth=2, arrowcolor="#636363",
ax=20, ay=-30, bordercolor="#c7c7c7", borderwidth=2, borderpad=4, bgcolor="#ff7f0e",
opacity=0.8)
fig.update_traces(marker=dict(size=12), selector=dict(mode='markers+text'))
# Display the chart in Streamlit
st.plotly_chart(fig, use_container_width=True)
# Show students their scores over time
st.dataframe(df_selection[['date', 'global_score', 'name']])
# Chart 3 (admin only): Global score chart
# Define the order of categories explicitly
order_of_categories = ['A', 'B', 'C', 'D', 'E']
# Convert global_score to a categorical type with the specified order
df_selection['global_score'] = pd.Categorical(df_selection['global_score'], categories=order_of_categories, ordered=True)
# Plot the histogram
fig_score_distribution = px.histogram(
df_selection,
x="global_score",
title="<b>Global Score Distribution</b>",
color_discrete_sequence=["#33CFA5"],
category_orders={"global_score": ["A", "B", "C", "D", "E"]}
)
if username == 'admin':
st.plotly_chart(fig_score_distribution, use_container_width=True)
# Chart 4 (admin only): Students with <5 attempts (filtered)
if username == 'admin':
students_with_less_than_5_attempts = total_attempts_by_name[total_attempts_by_name['total_attempts'] < 5]
fig_less_than_5_attempts = px.bar(
students_with_less_than_5_attempts,
x="name",
y="total_attempts",
title="<b>Students with <5 Attempts</b>",
color_discrete_sequence=["#D62728"] * len(students_with_less_than_5_attempts),
template="plotly_white",
)
if username == 'admin':
st.plotly_chart(fig_less_than_5_attempts, use_container_width=True)
# Selection of a student for detailed view (<5 attempts) - based on filtered data
if username == 'admin':
selected_student_less_than_5 = st.selectbox("Select a student with less than 5 attempts to view details:", students_with_less_than_5_attempts['name'])
if selected_student_less_than_5:
st.write(df_selection[df_selection['name'] == selected_student_less_than_5])
# Chart 5 (admin only): Students with at least one global score of 'C', 'D', 'E' (filtered)
if username == 'admin':
students_with_cde = df_selection[df_selection['global_score'].isin(['C', 'D', 'E'])].groupby("name")['date'].count().reset_index()
students_with_cde.columns = ['name', 'total_attempts']
fig_students_with_cde = px.bar(
students_with_cde,
x="name",
y="total_attempts",
title="<b>Students with at least one global score of 'C', 'D', 'E'</b>",
color_discrete_sequence=["#FF7F0E"] * len(students_with_cde),
template="plotly_white",
)
st.plotly_chart(fig_students_with_cde, use_container_width=True)
# Selection of a student for detailed view (score of 'C', 'D', 'E') - based on filtered data
if username == 'admin':
selected_student_cde = st.selectbox("Select a student with at least one score of 'C', 'D', 'E' to view details:", students_with_cde['name'])
if selected_student_cde:
st.write(df_selection[df_selection['name'] == selected_student_cde])
# Chart 7 (all): Radar Chart
# Mapping grades to numeric values
grade_to_numeric = {'A': 90, 'B': 70, 'C': 50, 'D': 30, 'E': 10}
df.replace(grade_to_numeric, inplace=True)
# Calculate average numeric scores for each category
average_scores = df.groupby('name')[['hx_PC_score', 'hx_AS_score', 'hx_others_score', 'differentials_score']].mean().reset_index()
if username == 'admin':
st.title('Average Scores Radar Chart')
else:
st.title('Performance in each segment as compared to your friends!')
# Categories for the radar chart
categories = ['Presenting complaint', 'Associated symptoms', '(Others)', 'Differentials']
st.markdown("""
###
Double click on the names in the legend to include/exclude them from the plot.
""")
# Custom colors for better contrast
colors = ['gold', 'cyan', 'magenta', 'green']
# Plotly Radar Chart
fig = go.Figure()
for index, row in average_scores.iterrows():
fig.add_trace(go.Scatterpolar(
r=[row['hx_PC_score'], row['hx_AS_score'], row['hx_others_score'], row['differentials_score']],
theta=categories,
fill='toself',
name=row['name'],
line=dict(color=colors[index % len(colors)])
))
fig.update_layout(
polar=dict(
radialaxis=dict(
visible=True,
range=[0, 100], # Numeric range
tickvals=[10, 30, 50, 70, 90], # Positions for the grade labels
ticktext=['E', 'D', 'C', 'B', 'A'] # Grade labels
)),
showlegend=True,
height=600, # Set the height of the figure
width=600 # Set the width of the figure
)
# Display the figure in Streamlit
st.plotly_chart(fig, use_container_width=True)
|