Spaces:
Runtime error
Runtime error
Merge branch 'main' of https://github.com/yewey2/mediscenario-LLM
Browse files- dashboard_pull11.py +333 -0
dashboard_pull11.py
ADDED
@@ -0,0 +1,333 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
from datetime import timedelta, date
|
3 |
+
import firebase_admin
|
4 |
+
from firebase_admin import credentials, storage, firestore
|
5 |
+
import streamlit as st
|
6 |
+
import streamlit_authenticator as stauth
|
7 |
+
import pandas as pd
|
8 |
+
import plotly.express as px
|
9 |
+
import plotly.graph_objects as go
|
10 |
+
import json, os, dotenv
|
11 |
+
from dotenv import load_dotenv
|
12 |
+
load_dotenv()
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
os.environ["FIREBASE_CREDENTIAL"] = dotenv.get_key(dotenv.find_dotenv(), "FIREBASE_CREDENTIAL")
|
17 |
+
cred = credentials.Certificate(json.loads(os.environ.get("FIREBASE_CREDENTIAL")))
|
18 |
+
|
19 |
+
# Initialize Firebase (if not already initialized)
|
20 |
+
if not firebase_admin._apps:
|
21 |
+
firebase_admin.initialize_app(cred, {'storageBucket': 'healthhack-store.appspot.com'})
|
22 |
+
|
23 |
+
#firebase_admin.initialize_app(cred,{'storageBucket': 'healthhack-store.appspot.com'}) # connecting to firebase
|
24 |
+
db = firestore.client()
|
25 |
+
|
26 |
+
docs = db.collection("clinical_scores").stream()
|
27 |
+
|
28 |
+
# Create a list of dictionaries from the documents
|
29 |
+
data = []
|
30 |
+
for doc in docs:
|
31 |
+
doc_dict = doc.to_dict()
|
32 |
+
doc_dict['document_id'] = doc.id # In case you need the document ID later
|
33 |
+
data.append(doc_dict)
|
34 |
+
|
35 |
+
# Create a DataFrame
|
36 |
+
df = pd.DataFrame(data)
|
37 |
+
|
38 |
+
#print(df)
|
39 |
+
|
40 |
+
# Exception handling for irregular grading, e.g. A-, B+
|
41 |
+
def standardize_grade(value):
|
42 |
+
if pd.isna(value):
|
43 |
+
return value
|
44 |
+
value = str(value).upper().strip() # Convert to string, uppercase and remove leading/trailing spaces
|
45 |
+
if value and value[0] in ['A', 'B', 'C', 'D', 'E']:
|
46 |
+
return value[0] # Return the first character if it's A, B, C, D, or E
|
47 |
+
return value # Return the original value if no match
|
48 |
+
|
49 |
+
# Columns to check
|
50 |
+
columns_to_check = ['hx_others_score', 'hx_AS_score', 'differentials_score', 'global_score']
|
51 |
+
|
52 |
+
# Apply the function to the specified columns
|
53 |
+
df[columns_to_check] = df[columns_to_check].applymap(standardize_grade)
|
54 |
+
|
55 |
+
login_info = {
|
56 |
+
"student1": "password",
|
57 |
+
"student2": "password",
|
58 |
+
"student3": "password",
|
59 |
+
"admin":"admin"
|
60 |
+
}
|
61 |
+
# Initialize username variable
|
62 |
+
username = None
|
63 |
+
|
64 |
+
def set_username(x):
|
65 |
+
st.session_state.username = x
|
66 |
+
|
67 |
+
def validate_username(username, password):
|
68 |
+
if login_info.get(username) == password:
|
69 |
+
set_username(username)
|
70 |
+
else:
|
71 |
+
st.warning("Wrong username or password")
|
72 |
+
return None
|
73 |
+
|
74 |
+
if not st.session_state.get("username"):
|
75 |
+
## ask to login
|
76 |
+
st.title("Login")
|
77 |
+
username = st.text_input("Username:")
|
78 |
+
password = st.text_input("Password:", type="password")
|
79 |
+
login_button = st.button("Login", on_click=validate_username, args=[username, password])
|
80 |
+
|
81 |
+
if st.session_state.get("username"):
|
82 |
+
username = st.session_state.get("username")
|
83 |
+
st.title(f"Hello there, {st.session_state.username}")
|
84 |
+
|
85 |
+
# Display logout button
|
86 |
+
if st.button('Logout'):
|
87 |
+
# Remove username from session state
|
88 |
+
del st.session_state.username
|
89 |
+
# Rerun the app to go back to the login view
|
90 |
+
st.rerun()
|
91 |
+
|
92 |
+
# Convert date from string to datetime if it's not already in datetime format
|
93 |
+
df['date'] = pd.to_datetime(df['date'], errors='coerce')
|
94 |
+
|
95 |
+
# Streamlit page configuration
|
96 |
+
#st.set_page_config(page_title="Interactive Data Dashboard", layout="wide")
|
97 |
+
|
98 |
+
# Use df_selection for filtering data based on authenticated user
|
99 |
+
if username != 'admin':
|
100 |
+
df_selection = df[df['name'] == username]
|
101 |
+
else:
|
102 |
+
df_selection = df # Admin sees all data
|
103 |
+
|
104 |
+
# Chart Title: Student Performance Dashboard
|
105 |
+
st.title(":bar_chart: Student Performance Dashboard")
|
106 |
+
st.markdown("##")
|
107 |
+
|
108 |
+
# Chart 1: Total attempts
|
109 |
+
if df_selection.empty:
|
110 |
+
st.error("No data available to display.")
|
111 |
+
else:
|
112 |
+
# Total attempts by name (filtered)
|
113 |
+
total_attempts_by_name = df_selection.groupby("name")['date'].count().reset_index()
|
114 |
+
total_attempts_by_name.columns = ['name', 'total_attempts']
|
115 |
+
|
116 |
+
# For a single point or multiple points, use a scatter plot
|
117 |
+
fig_total_attempts = px.scatter(
|
118 |
+
total_attempts_by_name,
|
119 |
+
x="name",
|
120 |
+
y="total_attempts",
|
121 |
+
title="<b>Total Attempts</b>",
|
122 |
+
size='total_attempts', # Adjust the size of points
|
123 |
+
color_discrete_sequence=["#0083B8"] * len(total_attempts_by_name),
|
124 |
+
template="plotly_white",
|
125 |
+
text='total_attempts' # Display total_attempts as text labels
|
126 |
+
)
|
127 |
+
|
128 |
+
# Add text annotation for each point
|
129 |
+
for line in range(0, total_attempts_by_name.shape[0]):
|
130 |
+
fig_total_attempts.add_annotation(
|
131 |
+
text=str(total_attempts_by_name['total_attempts'].iloc[line]),
|
132 |
+
x=total_attempts_by_name['name'].iloc[line],
|
133 |
+
y=total_attempts_by_name['total_attempts'].iloc[line],
|
134 |
+
showarrow=True,
|
135 |
+
font=dict(family="Courier New, monospace", size=18, color="#ffffff"),
|
136 |
+
align="center",
|
137 |
+
arrowhead=2,
|
138 |
+
arrowsize=1,
|
139 |
+
arrowwidth=2,
|
140 |
+
arrowcolor="#636363",
|
141 |
+
ax=20,
|
142 |
+
ay=-30,
|
143 |
+
bordercolor="#c7c7c7",
|
144 |
+
borderwidth=2,
|
145 |
+
borderpad=4,
|
146 |
+
bgcolor="#ff7f0e",
|
147 |
+
opacity=0.8
|
148 |
+
)
|
149 |
+
|
150 |
+
# Update traces for styling
|
151 |
+
fig_total_attempts.update_traces(marker=dict(size=12), selector=dict(mode='markers+text'))
|
152 |
+
|
153 |
+
# Display the scatter plot in Streamlit
|
154 |
+
st.plotly_chart(fig_total_attempts, use_container_width=True)
|
155 |
+
|
156 |
+
# Chart 2 (students only): Personal scores over time
|
157 |
+
if username != 'admin':
|
158 |
+
# Sort the DataFrame by 'date' in chronological order
|
159 |
+
df_selection = df_selection.sort_values(by='date')
|
160 |
+
#fig = px.bar(df_selection, x='date', y='global_score', title='Your scores!')
|
161 |
+
|
162 |
+
if len(df_selection) > 1:
|
163 |
+
# # If more than one point, use a bar chart
|
164 |
+
# fig = px.bar(df_selection, x='date', y='global_score', title='Global Score Over Time')
|
165 |
+
# # fig.update_yaxes(
|
166 |
+
# # tickmode='array',
|
167 |
+
# # tickvals=[1, 2, 3, 4, 5], # Reverse the order of tickvals
|
168 |
+
# # ticktext=['A', 'B','C','D','E'] # Reverse the order of ticktext
|
169 |
+
# # )
|
170 |
+
# Mapping dictionary
|
171 |
+
grade_to_score = {'A': 100, 'B': 80, 'C': 60, 'D': 40, 'E': 20}
|
172 |
+
|
173 |
+
# Apply mapping to convert letter grades to numerical scores
|
174 |
+
df_selection['numeric_score'] = df_selection['global_score'].map(grade_to_score)
|
175 |
+
|
176 |
+
# Sort the DataFrame by 'date' in chronological order
|
177 |
+
df_selection = df_selection.sort_values(by='date')
|
178 |
+
|
179 |
+
# Check if there's more than one point in the DataFrame
|
180 |
+
if len(df_selection) > 1:
|
181 |
+
# Create a bar chart using Plotly Express
|
182 |
+
fig = px.bar(df_selection, x='date', y='numeric_score', title='Your scores over time')
|
183 |
+
else:
|
184 |
+
# Create a bar chart with just one point
|
185 |
+
fig = px.bar(df_selection, x='date', y='numeric_score', title='Global Score')
|
186 |
+
|
187 |
+
# Manually set the y-axis ticks and labels
|
188 |
+
fig.update_yaxes(
|
189 |
+
tickmode='array',
|
190 |
+
tickvals=list(grade_to_score.values()), # Positions for the ticks
|
191 |
+
ticktext=list(grade_to_score.keys()), # Text labels for the ticks
|
192 |
+
range=[0, 120] # Extend the range a bit beyond 100 to accommodate 'A'
|
193 |
+
)
|
194 |
+
|
195 |
+
# # Use st.plotly_chart to display the chart in Streamlit
|
196 |
+
# st.plotly_chart(fig, use_container_width=True)
|
197 |
+
|
198 |
+
else:
|
199 |
+
# For a single point, use a scatter plot
|
200 |
+
fig = px.scatter(df_selection, x='date', y='global_score', title='Global Score',
|
201 |
+
text='global_score', size_max=60)
|
202 |
+
# Add text annotation
|
203 |
+
for line in range(0,df_selection.shape[0]):
|
204 |
+
fig.add_annotation(text=df_selection['global_score'].iloc[line],
|
205 |
+
x=df_selection['date'].iloc[line], y=df_selection['global_score'].iloc[line],
|
206 |
+
showarrow=True, font=dict(family="Courier New, monospace", size=18, color="#ffffff"),
|
207 |
+
align="center", arrowhead=2, arrowsize=1, arrowwidth=2, arrowcolor="#636363",
|
208 |
+
ax=20, ay=-30, bordercolor="#c7c7c7", borderwidth=2, borderpad=4, bgcolor="#ff7f0e",
|
209 |
+
opacity=0.8)
|
210 |
+
fig.update_traces(marker=dict(size=12), selector=dict(mode='markers+text'))
|
211 |
+
|
212 |
+
# Display the chart in Streamlit
|
213 |
+
st.plotly_chart(fig, use_container_width=True)
|
214 |
+
|
215 |
+
# Show students their scores over time
|
216 |
+
st.dataframe(df_selection[['date', 'global_score', 'name']])
|
217 |
+
|
218 |
+
|
219 |
+
# Chart 3 (admin only): Global score chart
|
220 |
+
# Define the order of categories explicitly
|
221 |
+
order_of_categories = ['A', 'B', 'C', 'D', 'E']
|
222 |
+
|
223 |
+
# Convert global_score to a categorical type with the specified order
|
224 |
+
df_selection['global_score'] = pd.Categorical(df_selection['global_score'], categories=order_of_categories, ordered=True)
|
225 |
+
|
226 |
+
# Plot the histogram
|
227 |
+
fig_score_distribution = px.histogram(
|
228 |
+
df_selection,
|
229 |
+
x="global_score",
|
230 |
+
title="<b>Global Score Distribution</b>",
|
231 |
+
color_discrete_sequence=["#33CFA5"],
|
232 |
+
category_orders={"global_score": ["A", "B", "C", "D", "E"]}
|
233 |
+
)
|
234 |
+
if username == 'admin':
|
235 |
+
st.plotly_chart(fig_score_distribution, use_container_width=True)
|
236 |
+
|
237 |
+
|
238 |
+
# Chart 4 (admin only): Students with <5 attempts (filtered)
|
239 |
+
if username == 'admin':
|
240 |
+
students_with_less_than_5_attempts = total_attempts_by_name[total_attempts_by_name['total_attempts'] < 5]
|
241 |
+
fig_less_than_5_attempts = px.bar(
|
242 |
+
students_with_less_than_5_attempts,
|
243 |
+
x="name",
|
244 |
+
y="total_attempts",
|
245 |
+
title="<b>Students with <5 Attempts</b>",
|
246 |
+
color_discrete_sequence=["#D62728"] * len(students_with_less_than_5_attempts),
|
247 |
+
template="plotly_white",
|
248 |
+
)
|
249 |
+
|
250 |
+
if username == 'admin':
|
251 |
+
st.plotly_chart(fig_less_than_5_attempts, use_container_width=True)
|
252 |
+
|
253 |
+
|
254 |
+
# Selection of a student for detailed view (<5 attempts) - based on filtered data
|
255 |
+
if username == 'admin':
|
256 |
+
selected_student_less_than_5 = st.selectbox("Select a student with less than 5 attempts to view details:", students_with_less_than_5_attempts['name'])
|
257 |
+
if selected_student_less_than_5:
|
258 |
+
st.write(df_selection[df_selection['name'] == selected_student_less_than_5])
|
259 |
+
|
260 |
+
# Chart 5 (admin only): Students with at least one global score of 'C', 'D', 'E' (filtered)
|
261 |
+
if username == 'admin':
|
262 |
+
students_with_cde = df_selection[df_selection['global_score'].isin(['C', 'D', 'E'])].groupby("name")['date'].count().reset_index()
|
263 |
+
students_with_cde.columns = ['name', 'total_attempts']
|
264 |
+
fig_students_with_cde = px.bar(
|
265 |
+
students_with_cde,
|
266 |
+
x="name",
|
267 |
+
y="total_attempts",
|
268 |
+
title="<b>Students with at least one global score of 'C', 'D', 'E'</b>",
|
269 |
+
color_discrete_sequence=["#FF7F0E"] * len(students_with_cde),
|
270 |
+
template="plotly_white",
|
271 |
+
)
|
272 |
+
st.plotly_chart(fig_students_with_cde, use_container_width=True)
|
273 |
+
|
274 |
+
# Selection of a student for detailed view (score of 'C', 'D', 'E') - based on filtered data
|
275 |
+
if username == 'admin':
|
276 |
+
selected_student_cde = st.selectbox("Select a student with at least one score of 'C', 'D', 'E' to view details:", students_with_cde['name'])
|
277 |
+
if selected_student_cde:
|
278 |
+
st.write(df_selection[df_selection['name'] == selected_student_cde])
|
279 |
+
|
280 |
+
# Chart 7 (all): Radar Chart
|
281 |
+
|
282 |
+
# Mapping grades to numeric values
|
283 |
+
grade_to_numeric = {'A': 90, 'B': 70, 'C': 50, 'D': 30, 'E': 10}
|
284 |
+
df.replace(grade_to_numeric, inplace=True)
|
285 |
+
|
286 |
+
# Calculate average numeric scores for each category
|
287 |
+
average_scores = df.groupby('name')[['hx_PC_score', 'hx_AS_score', 'hx_others_score', 'differentials_score']].mean().reset_index()
|
288 |
+
|
289 |
+
if username == 'admin':
|
290 |
+
st.title('Average Scores Radar Chart')
|
291 |
+
else:
|
292 |
+
st.title('Performance in each segment as compared to your friends!')
|
293 |
+
|
294 |
+
# Categories for the radar chart
|
295 |
+
categories = ['Presenting complaint', 'Associated symptoms', '(Others)', 'Differentials']
|
296 |
+
|
297 |
+
st.markdown("""
|
298 |
+
###
|
299 |
+
Double click on the names in the legend to include/exclude them from the plot.
|
300 |
+
""")
|
301 |
+
|
302 |
+
|
303 |
+
# Custom colors for better contrast
|
304 |
+
colors = ['gold', 'cyan', 'magenta', 'green']
|
305 |
+
|
306 |
+
# Plotly Radar Chart
|
307 |
+
fig = go.Figure()
|
308 |
+
|
309 |
+
for index, row in average_scores.iterrows():
|
310 |
+
fig.add_trace(go.Scatterpolar(
|
311 |
+
r=[row['hx_PC_score'], row['hx_AS_score'], row['hx_others_score'], row['differentials_score']],
|
312 |
+
theta=categories,
|
313 |
+
fill='toself',
|
314 |
+
name=row['name'],
|
315 |
+
line=dict(color=colors[index % len(colors)])
|
316 |
+
))
|
317 |
+
|
318 |
+
fig.update_layout(
|
319 |
+
polar=dict(
|
320 |
+
radialaxis=dict(
|
321 |
+
visible=True,
|
322 |
+
range=[0, 100], # Numeric range
|
323 |
+
tickvals=[10, 30, 50, 70, 90], # Positions for the grade labels
|
324 |
+
ticktext=['E', 'D', 'C', 'B', 'A'] # Grade labels
|
325 |
+
)),
|
326 |
+
showlegend=True,
|
327 |
+
height=600, # Set the height of the figure
|
328 |
+
width=600 # Set the width of the figure
|
329 |
+
)
|
330 |
+
|
331 |
+
# Display the figure in Streamlit
|
332 |
+
st.plotly_chart(fig, use_container_width=True)
|
333 |
+
|