Upload 6 files
Browse files- model.py +16 -10
- requirements.txt +3 -1
model.py
CHANGED
|
@@ -1,8 +1,4 @@
|
|
| 1 |
-
import
|
| 2 |
-
from PIL import Image, ImageDraw
|
| 3 |
-
import cv2
|
| 4 |
-
import numpy as np
|
| 5 |
-
from IPython.display import HTML
|
| 6 |
from base64 import b64encode
|
| 7 |
|
| 8 |
import torch
|
|
@@ -14,8 +10,7 @@ from diffusers.schedulers.scheduling_ddim import DDIMScheduler
|
|
| 14 |
#from transformers import CLIPTextModel, CLIPTokenizer
|
| 15 |
from tqdm.auto import tqdm
|
| 16 |
from huggingface_hub import notebook_login
|
| 17 |
-
|
| 18 |
-
import weights
|
| 19 |
|
| 20 |
device = 'cpu'
|
| 21 |
|
|
@@ -47,9 +42,6 @@ class MultilingualCLIP(transformers.PreTrainedModel):
|
|
| 47 |
return model, [], [], []
|
| 48 |
|
| 49 |
|
| 50 |
-
import torch
|
| 51 |
-
import torch.nn as nn
|
| 52 |
-
|
| 53 |
# Define the adaptation layer, 'checkpoint_9.pth'
|
| 54 |
class AdaptationLayer(nn.Module):
|
| 55 |
def __init__(self, input_dim, output_dim):
|
|
@@ -87,6 +79,20 @@ adapt_model.to(device)
|
|
| 87 |
state_dict = torch.load('weights/checkpoint_9.pth')
|
| 88 |
adapt_model.load_state_dict(state_dict)
|
| 89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
# 1. Load the autoencoder model which will be used to decode the latents into image space.
|
| 91 |
vae = AutoencoderKL.from_pretrained(
|
| 92 |
'CompVis/stable-diffusion-v1-4', subfolder='vae', use_auth_token=True)
|
|
|
|
| 1 |
+
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
from base64 import b64encode
|
| 3 |
|
| 4 |
import torch
|
|
|
|
| 10 |
#from transformers import CLIPTextModel, CLIPTokenizer
|
| 11 |
from tqdm.auto import tqdm
|
| 12 |
from huggingface_hub import notebook_login
|
| 13 |
+
import torch.nn as nn
|
|
|
|
| 14 |
|
| 15 |
device = 'cpu'
|
| 16 |
|
|
|
|
| 42 |
return model, [], [], []
|
| 43 |
|
| 44 |
|
|
|
|
|
|
|
|
|
|
| 45 |
# Define the adaptation layer, 'checkpoint_9.pth'
|
| 46 |
class AdaptationLayer(nn.Module):
|
| 47 |
def __init__(self, input_dim, output_dim):
|
|
|
|
| 79 |
state_dict = torch.load('weights/checkpoint_9.pth')
|
| 80 |
adapt_model.load_state_dict(state_dict)
|
| 81 |
|
| 82 |
+
from Multilingual_CLIP.multilingual_clip import pt_multilingual_clip
|
| 83 |
+
|
| 84 |
+
texts = [
|
| 85 |
+
'قطة تقرأ كتابا'
|
| 86 |
+
]
|
| 87 |
+
|
| 88 |
+
model_name = 'M-CLIP/LABSE-Vit-L-14'
|
| 89 |
+
|
| 90 |
+
# Load Model & Tokenizer
|
| 91 |
+
text_model = pt_multilingual_clip.MultilingualCLIP.from_pretrained(model_name)
|
| 92 |
+
text_model = text_model.to(device)
|
| 93 |
+
text_tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
|
| 94 |
+
|
| 95 |
+
embeddings= text_model.forward(texts, text_tokenizer, device )
|
| 96 |
# 1. Load the autoencoder model which will be used to decode the latents into image space.
|
| 97 |
vae = AutoencoderKL.from_pretrained(
|
| 98 |
'CompVis/stable-diffusion-v1-4', subfolder='vae', use_auth_token=True)
|
requirements.txt
CHANGED
|
@@ -2,4 +2,6 @@ transformers
|
|
| 2 |
diffusers
|
| 3 |
torch
|
| 4 |
accelerate
|
| 5 |
-
gradio
|
|
|
|
|
|
|
|
|
| 2 |
diffusers
|
| 3 |
torch
|
| 4 |
accelerate
|
| 5 |
+
gradio
|
| 6 |
+
opencv-python-headless
|
| 7 |
+
tqdm
|