Spaces:
Running
Running
import os | |
import torch | |
import cv2 | |
from PIL import Image | |
import numpy as np | |
from huggingface_hub import hf_hub_url, cached_download | |
from .rrdbnet_arch import RRDBNet | |
from .utils import ( | |
pad_reflect, | |
split_image_into_overlapping_patches, | |
stich_together, | |
unpad_image, | |
) | |
HF_MODELS = { | |
2: dict( | |
repo_id="sberbank-ai/Real-ESRGAN", | |
filename="RealESRGAN_x2.pth", | |
), | |
4: dict( | |
repo_id="sberbank-ai/Real-ESRGAN", | |
filename="RealESRGAN_x4.pth", | |
), | |
6: dict( | |
repo_id="alicangonullu/ESRGAN-Ulti", | |
filename="RealESRGAN_x4plus.pth", | |
), | |
8: dict( | |
repo_id="sberbank-ai/Real-ESRGAN", | |
filename="RealESRGAN_x8.pth", | |
), | |
} | |
class RealESRGAN: | |
def __init__(self, device, anime=False, scale=4): | |
self.device = device | |
self.scale = scale | |
if anime: | |
self.model = RRDBNet( | |
num_in_ch=3, | |
num_out_ch=3, | |
num_feat=64, | |
num_block=6, | |
num_grow_ch=32, | |
scale=scale, | |
) | |
else: | |
self.model = RRDBNet( | |
num_in_ch=3, | |
num_out_ch=3, | |
num_feat=64, | |
num_block=23, | |
num_grow_ch=32, | |
scale=scale, | |
) | |
def load_weights(self, model_path, download=True): | |
if not os.path.exists(model_path) and download: | |
assert self.scale in [2, 4, 8], "You can download models only with scales: 2, 4, 8" | |
config = HF_MODELS[self.scale] | |
cache_dir = os.path.dirname(model_path) | |
local_filename = os.path.basename(model_path) | |
config_file_url = hf_hub_url(repo_id=config["repo_id"], filename=config["filename"]) | |
cached_download(config_file_url, cache_dir=cache_dir, force_filename=local_filename) | |
print("Weights downloaded to:", os.path.join(cache_dir, local_filename)) | |
loadnet = torch.load(model_path) | |
if "params" in loadnet: | |
self.model.load_state_dict(loadnet["params"], strict=True) | |
elif "params_ema" in loadnet: | |
self.model.load_state_dict(loadnet["params_ema"], strict=True) | |
else: | |
self.model.load_state_dict(loadnet, strict=True) | |
self.model.eval() | |
self.model.to(self.device) | |
def predict(self, lr_image, batch_size=4, patches_size=192, padding=24, pad_size=15): | |
scale = self.scale | |
device = self.device | |
lr_image = np.array(lr_image) | |
lr_image = pad_reflect(lr_image, pad_size) | |
patches, p_shape = split_image_into_overlapping_patches( | |
lr_image, patch_size=patches_size, padding_size=padding | |
) | |
img = torch.FloatTensor(patches / 255).permute((0, 3, 1, 2)).to(device).detach() | |
with torch.no_grad(): | |
res = self.model(img[0:batch_size]) | |
for i in range(batch_size, img.shape[0], batch_size): | |
res = torch.cat((res, self.model(img[i : i + batch_size])), 0) | |
sr_image = res.permute((0, 2, 3, 1)).clamp_(0, 1).cpu() | |
np_sr_image = sr_image.numpy() | |
padded_size_scaled = tuple(np.multiply(p_shape[0:2], scale)) + (3,) | |
scaled_image_shape = tuple(np.multiply(lr_image.shape[0:2], scale)) + (3,) | |
np_sr_image = stich_together( | |
np_sr_image, | |
padded_image_shape=padded_size_scaled, | |
target_shape=scaled_image_shape, | |
padding_size=padding * scale, | |
) | |
sr_img = (np_sr_image * 255).astype(np.uint8) | |
sr_img = unpad_image(sr_img, pad_size * scale) | |
sr_img = Image.fromarray(sr_img) | |
return sr_img | |
def face_enhance(self, img, scale=4): | |
from gfpgan import GFPGANer | |
face_enhancer = GFPGANer( | |
model_path=r"C:\Users\Admin\Downloads\Term 3\Big Data Capstone Project\Real-ESRGAN-GFP\Img-Upscale-AI\model\GFPGANv1.3.pth", | |
upscale=scale, | |
arch="clean", | |
channel_multiplier=2, | |
) | |
_, _, output = face_enhancer.enhance( | |
img, has_aligned=False, only_center_face=False, paste_back=True | |
) | |
return output | |