Spaces:
Sleeping
Sleeping
import streamlit as st | |
import tensorflow as tf | |
import pickle | |
from tensorflow.keras.preprocessing import image | |
import numpy as np | |
# Function to preprocess the image | |
def preprocess_image(img_path, img_height, img_width, model_type="CNN"): | |
# Load the image and convert to grayscale | |
img = image.load_img(img_path, target_size=(img_height, img_width), color_mode='grayscale') | |
img_array = image.img_to_array(img) | |
# Normalize the image array | |
img_array = img_array / 255.0 # Normalize for all models | |
if model_type in ["Logistic Regression", "Decision Tree"]: | |
img_array = img_array.flatten() # Flatten for Logistic Regression and Decision Tree | |
img_array = np.expand_dims(img_array, axis=0) # Add batch dimension | |
else: | |
img_array = np.expand_dims(img_array, axis=0) # Add batch dimension for CNN and ANN | |
return img_array | |
# Load the Keras model | |
def load_keras_model(): | |
return tf.keras.models.load_model('best_model.keras') | |
# Load the other models | |
def load_pickle_model(model_path): | |
with open(model_path, 'rb') as f: | |
return pickle.load(f) | |
# Define model paths and validation accuracies | |
models_info = { | |
"ANN Model": { | |
"path": "ann_model.pkl", | |
"accuracy": 71.0 | |
}, | |
"Decision Tree": { | |
"path": "decision_tree_classifier_model.pkl", | |
"accuracy": 71.96 | |
}, | |
"Logistic Regression": { | |
"path": "logistic_regression_model.pkl", | |
"accuracy": 71.47 | |
}, | |
"CNN Model": { | |
"path": "best_model.keras", | |
"accuracy": 84.61 | |
} | |
} | |
# Streamlit UI | |
st.title("X-ray Image Classification") | |
st.write("Upload an X-ray image to classify it as Normal or Pneumonia.") | |
# Model selection | |
model_name = st.selectbox("Choose a model:", list(models_info.keys())) | |
# Display selected model accuracy | |
st.write(f"Selected Model: {model_name}") | |
st.write(f"Validation Accuracy: {models_info[model_name]['accuracy']:.2f}%") | |
# Load the selected model | |
if model_name == "CNN Model": | |
model = load_keras_model() | |
else: | |
model = load_pickle_model(models_info[model_name]["path"]) | |
# File uploader for image | |
uploaded_file = st.file_uploader("Choose an X-ray image...", type="jpeg") | |
if uploaded_file is not None: | |
with open("temp.jpeg", "wb") as f: | |
f.write(uploaded_file.getbuffer()) | |
# Use the appropriate preprocessing for the selected model | |
img_height, img_width = 224, 224 # Use the same dimensions as used during training | |
preprocessed_img = preprocess_image( | |
"temp.jpeg", | |
img_height, | |
img_width, | |
model_type=model_name # Pass the model name directly | |
) | |
st.image(uploaded_file, caption="Uploaded X-ray Image", use_column_width=True) | |
# Prediction logic | |
prediction = model.predict(preprocessed_img) | |
prediction_label = "Pneumonia" if prediction[0] > 0.5 else "Normal" | |
# Highlight the prediction | |
st.markdown(f"**Prediction:** <span style='color: {'red' if prediction_label == 'Pneumonia' else 'green'}; font-size: 24px;'>{prediction_label}</span> (Model: {model_name})", unsafe_allow_html=True) | |