Spaces:
Build error
Build error
import os, random, time | |
import torch | |
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler | |
from tqdm import tqdm | |
from memo.models.audio_proj import AudioProjModel | |
from memo.models.image_proj import ImageProjModel | |
from memo.models.unet_2d_condition import UNet2DConditionModel | |
from memo.models.unet_3d import UNet3DConditionModel | |
from memo.pipelines.video_pipeline import VideoPipeline | |
from memo.utils.audio_utils import extract_audio_emotion_labels, preprocess_audio, resample_audio | |
from memo.utils.vision_utils import preprocess_image, tensor_to_video | |
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") | |
weight_dtype = torch.bfloat16 | |
with torch.inference_mode(): | |
vae = AutoencoderKL.from_pretrained("/content/memo/checkpoints/vae").to(device=device, dtype=weight_dtype) | |
reference_net = UNet2DConditionModel.from_pretrained("/content/memo/checkpoints", subfolder="reference_net", use_safetensors=True) | |
diffusion_net = UNet3DConditionModel.from_pretrained("/content/memo/checkpoints", subfolder="diffusion_net", use_safetensors=True) | |
image_proj = ImageProjModel.from_pretrained("/content/memo/checkpoints", subfolder="image_proj", use_safetensors=True) | |
audio_proj = AudioProjModel.from_pretrained("/content/memo/checkpoints", subfolder="audio_proj", use_safetensors=True) | |
vae.requires_grad_(False).eval() | |
reference_net.requires_grad_(False).eval() | |
diffusion_net.requires_grad_(False).eval() | |
image_proj.requires_grad_(False).eval() | |
audio_proj.requires_grad_(False).eval() | |
reference_net.enable_xformers_memory_efficient_attention() | |
diffusion_net.enable_xformers_memory_efficient_attention() | |
noise_scheduler = FlowMatchEulerDiscreteScheduler() | |
pipeline = VideoPipeline(vae=vae, reference_net=reference_net, diffusion_net=diffusion_net, scheduler=noise_scheduler, image_proj=image_proj) | |
pipeline.to(device=device, dtype=weight_dtype) | |
def generate(input_video, input_audio, seed): | |
resolution = 512 | |
num_generated_frames_per_clip = 16 | |
fps = 30 | |
num_init_past_frames = 2 | |
num_past_frames = 16 | |
inference_steps = 20 | |
cfg_scale = 3.5 | |
if seed == 0: | |
random.seed(int(time.time())) | |
seed = random.randint(0, 18446744073709551615) | |
generator = torch.manual_seed(seed) | |
img_size = (resolution, resolution) | |
pixel_values, face_emb = preprocess_image(face_analysis_model="/content/memo/checkpoints/misc/face_analysis", image_path=input_video, image_size=resolution) | |
output_dir = "/content/memo/outputs" | |
os.makedirs(output_dir, exist_ok=True) | |
cache_dir = os.path.join(output_dir, "audio_preprocess") | |
os.makedirs(cache_dir, exist_ok=True) | |
input_audio = resample_audio(input_audio, os.path.join(cache_dir, f"{os.path.basename(input_audio).split('.')[0]}-16k.wav")) | |
audio_emb, audio_length = preprocess_audio( | |
wav_path=input_audio, | |
num_generated_frames_per_clip=num_generated_frames_per_clip, | |
fps=fps, | |
wav2vec_model="/content/memo/checkpoints/wav2vec2", | |
vocal_separator_model="/content/memo/checkpoints/misc/vocal_separator/Kim_Vocal_2.onnx", | |
cache_dir=cache_dir, | |
device=device, | |
) | |
audio_emotion, num_emotion_classes = extract_audio_emotion_labels( | |
model="/content/memo/checkpoints", | |
wav_path=input_audio, | |
emotion2vec_model="/content/memo/checkpoints/emotion2vec_plus_large", | |
audio_length=audio_length, | |
device=device, | |
) | |
video_frames = [] | |
num_clips = audio_emb.shape[0] // num_generated_frames_per_clip | |
for t in tqdm(range(num_clips), desc="Generating video clips"): | |
if len(video_frames) == 0: | |
past_frames = pixel_values.repeat(num_init_past_frames, 1, 1, 1) | |
past_frames = past_frames.to(dtype=pixel_values.dtype, device=pixel_values.device) | |
pixel_values_ref_img = torch.cat([pixel_values, past_frames], dim=0) | |
else: | |
past_frames = video_frames[-1][0] | |
past_frames = past_frames.permute(1, 0, 2, 3) | |
past_frames = past_frames[0 - num_past_frames :] | |
past_frames = past_frames * 2.0 - 1.0 | |
past_frames = past_frames.to(dtype=pixel_values.dtype, device=pixel_values.device) | |
pixel_values_ref_img = torch.cat([pixel_values, past_frames], dim=0) | |
pixel_values_ref_img = pixel_values_ref_img.unsqueeze(0) | |
audio_tensor = (audio_emb[t * num_generated_frames_per_clip : min((t + 1) * num_generated_frames_per_clip, audio_emb.shape[0])].unsqueeze(0).to(device=audio_proj.device, dtype=audio_proj.dtype)) | |
audio_tensor = audio_proj(audio_tensor) | |
audio_emotion_tensor = audio_emotion[t * num_generated_frames_per_clip : min((t + 1) * num_generated_frames_per_clip, audio_emb.shape[0])] | |
pipeline_output = pipeline( | |
ref_image=pixel_values_ref_img, | |
audio_tensor=audio_tensor, | |
audio_emotion=audio_emotion_tensor, | |
emotion_class_num=num_emotion_classes, | |
face_emb=face_emb, | |
width=img_size[0], | |
height=img_size[1], | |
video_length=num_generated_frames_per_clip, | |
num_inference_steps=inference_steps, | |
guidance_scale=cfg_scale, | |
generator=generator, | |
) | |
video_frames.append(pipeline_output.videos) | |
video_frames = torch.cat(video_frames, dim=2) | |
video_frames = video_frames.squeeze(0) | |
video_frames = video_frames[:, :audio_length] | |
video_path = f"/content/memo-{seed}-tost.mp4" | |
tensor_to_video(video_frames, video_path, input_audio, fps=fps) | |
return video_path | |
import gradio as gr | |
with gr.Blocks(css=".gradio-container {max-width: 1080px !important}", analytics_enabled=False) as demo: | |
with gr.Row(): | |
with gr.Column(): | |
input_video = gr.Image(label="Upload Input Image", type="filepath") | |
input_audio = gr.Audio(label="Upload Input Audio", type="filepath") | |
seed = gr.Number(label="Seed (0 for Random)", value=0, precision=0) | |
with gr.Column(): | |
video_output = gr.Video(label="Generated Video") | |
generate_button = gr.Button("Generate") | |
generate_button.click( | |
fn=generate, | |
inputs=[input_video, input_audio, seed], | |
outputs=[video_output], | |
) | |
demo.queue().launch(inline=False, share=False, debug=True, server_name='0.0.0.0', server_port=7860, allowed_paths=["/content"]) |