meepmoo commited on
Commit
92b86ca
·
verified ·
1 Parent(s): 268fee6

Update worker_runpod.py

Browse files
Files changed (1) hide show
  1. worker_runpod.py +12 -5
worker_runpod.py CHANGED
@@ -1,5 +1,4 @@
1
  import os, json, requests, random, runpod
2
-
3
  import torch
4
  from diffusers import AutoencoderKLCogVideoX, CogVideoXImageToVideoPipeline, CogVideoXTransformer3DModel
5
  from cogvideox.utils.lora_utils import merge_lora, unmerge_lora
@@ -8,14 +7,22 @@ from transformers import T5EncoderModel, T5Tokenizer
8
 
9
  with torch.inference_mode():
10
  model_id = "/content/model"
11
- transformer = CogVideoXTransformer3DModel.from_pretrained(model_id, subfolder="transformer", torch_dtype=torch.float16)
12
- text_encoder = T5EncoderModel.from_pretrained(model_id, subfolder="text_encoder", torch_dtype=torch.float16)
13
- vae = AutoencoderKLCogVideoX.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float16)
 
 
14
  tokenizer = T5Tokenizer.from_pretrained(model_id, subfolder="tokenizer")
 
 
15
  pipe = CogVideoXImageToVideoPipeline.from_pretrained(model_id, tokenizer=tokenizer, text_encoder=text_encoder, transformer=transformer, vae=vae, torch_dtype=torch.float16).to("cuda")
 
16
  lora_path = "/content/shirtlift.safetensors"
17
  lora_weight = 1.0
18
- pipe = merge_lora(pipe, lora_path, lora_weight)
 
 
 
19
  # pipe.enable_model_cpu_offload()
20
 
21
  def download_file(url, save_dir, file_name):
 
1
  import os, json, requests, random, runpod
 
2
  import torch
3
  from diffusers import AutoencoderKLCogVideoX, CogVideoXImageToVideoPipeline, CogVideoXTransformer3DModel
4
  from cogvideox.utils.lora_utils import merge_lora, unmerge_lora
 
7
 
8
  with torch.inference_mode():
9
  model_id = "/content/model"
10
+
11
+ # Load models and ensure they are placed on CUDA device
12
+ transformer = CogVideoXTransformer3DModel.from_pretrained(model_id, subfolder="transformer", torch_dtype=torch.float16).to("cuda")
13
+ text_encoder = T5EncoderModel.from_pretrained(model_id, subfolder="text_encoder", torch_dtype=torch.float16).to("cuda")
14
+ vae = AutoencoderKLCogVideoX.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float16).to("cuda")
15
  tokenizer = T5Tokenizer.from_pretrained(model_id, subfolder="tokenizer")
16
+
17
+ # Ensure the pipeline is on the same device (CUDA)
18
  pipe = CogVideoXImageToVideoPipeline.from_pretrained(model_id, tokenizer=tokenizer, text_encoder=text_encoder, transformer=transformer, vae=vae, torch_dtype=torch.float16).to("cuda")
19
+
20
  lora_path = "/content/shirtlift.safetensors"
21
  lora_weight = 1.0
22
+
23
+ # Merge Lora model and ensure it's on the same device
24
+ pipe = merge_lora(pipe, lora_path, lora_weight).to("cuda")
25
+
26
  # pipe.enable_model_cpu_offload()
27
 
28
  def download_file(url, save_dir, file_name):