Spaces:
Runtime error
Runtime error
File size: 9,075 Bytes
0dcccdd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 |
import json
import os
import numpy as np
import torch
from diffusers import (AutoencoderKL, CogVideoXDDIMScheduler, DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler, EulerDiscreteScheduler,
PNDMScheduler)
from transformers import T5EncoderModel, T5Tokenizer
from omegaconf import OmegaConf
from PIL import Image
from cogvideox.models.transformer3d import CogVideoXTransformer3DModel
from cogvideox.models.autoencoder_magvit import AutoencoderKLCogVideoX
from cogvideox.pipeline.pipeline_cogvideox import CogVideoX_Fun_Pipeline
from cogvideox.pipeline.pipeline_cogvideox_inpaint import CogVideoX_Fun_Pipeline_Inpaint
from cogvideox.utils.lora_utils import merge_lora, unmerge_lora
from cogvideox.utils.utils import get_image_to_video_latent, save_videos_grid
# Low gpu memory mode, this is used when the GPU memory is under 16GB
low_gpu_memory_mode = False
# Config and model path
model_name = "models/Diffusion_Transformer/CogVideoX-Fun-V1.1-2b-InP"
# Choose the sampler in "Euler" "Euler A" "DPM++" "PNDM" "DDIM_Cog" and "DDIM_Origin"
sampler_name = "DDIM_Origin"
# Load pretrained model if need
transformer_path = None
vae_path = None
lora_path = None
# Other params
sample_size = [384, 672]
video_length = 49
fps = 8
# If you want to generate ultra long videos, please set partial_video_length as the length of each sub video segment
partial_video_length = None
overlap_video_length = 4
# Use torch.float16 if GPU does not support torch.bfloat16
# ome graphics cards, such as v100, 2080ti, do not support torch.bfloat16
weight_dtype = torch.bfloat16
# If you want to generate from text, please set the validation_image_start = None and validation_image_end = None
validation_image_start = "asset/1.png"
validation_image_end = None
# prompts
prompt = "The dog is shaking head. The video is of high quality, and the view is very clear. High quality, masterpiece, best quality, highres, ultra-detailed, fantastic."
negative_prompt = "The video is not of a high quality, it has a low resolution. Watermark present in each frame. The background is solid. Strange body and strange trajectory. Distortion. "
guidance_scale = 6.0
seed = 43
num_inference_steps = 50
lora_weight = 0.55
save_path = "samples/cogvideox-fun-videos_i2v"
transformer = CogVideoXTransformer3DModel.from_pretrained_2d(
model_name,
subfolder="transformer",
).to(weight_dtype)
if transformer_path is not None:
print(f"From checkpoint: {transformer_path}")
if transformer_path.endswith("safetensors"):
from safetensors.torch import load_file, safe_open
state_dict = load_file(transformer_path)
else:
state_dict = torch.load(transformer_path, map_location="cpu")
state_dict = state_dict["state_dict"] if "state_dict" in state_dict else state_dict
m, u = transformer.load_state_dict(state_dict, strict=False)
print(f"missing keys: {len(m)}, unexpected keys: {len(u)}")
# Get Vae
vae = AutoencoderKLCogVideoX.from_pretrained(
model_name,
subfolder="vae"
).to(weight_dtype)
if vae_path is not None:
print(f"From checkpoint: {vae_path}")
if vae_path.endswith("safetensors"):
from safetensors.torch import load_file, safe_open
state_dict = load_file(vae_path)
else:
state_dict = torch.load(vae_path, map_location="cpu")
state_dict = state_dict["state_dict"] if "state_dict" in state_dict else state_dict
m, u = vae.load_state_dict(state_dict, strict=False)
print(f"missing keys: {len(m)}, unexpected keys: {len(u)}")
text_encoder = T5EncoderModel.from_pretrained(
model_name, subfolder="text_encoder", torch_dtype=weight_dtype
)
# Get Scheduler
Choosen_Scheduler = scheduler_dict = {
"Euler": EulerDiscreteScheduler,
"Euler A": EulerAncestralDiscreteScheduler,
"DPM++": DPMSolverMultistepScheduler,
"PNDM": PNDMScheduler,
"DDIM_Cog": CogVideoXDDIMScheduler,
"DDIM_Origin": DDIMScheduler,
}[sampler_name]
scheduler = Choosen_Scheduler.from_pretrained(
model_name,
subfolder="scheduler"
)
if transformer.config.in_channels != vae.config.latent_channels:
pipeline = CogVideoX_Fun_Pipeline_Inpaint.from_pretrained(
model_name,
vae=vae,
text_encoder=text_encoder,
transformer=transformer,
scheduler=scheduler,
torch_dtype=weight_dtype
)
else:
pipeline = CogVideoX_Fun_Pipeline.from_pretrained(
model_name,
vae=vae,
text_encoder=text_encoder,
transformer=transformer,
scheduler=scheduler,
torch_dtype=weight_dtype
)
if low_gpu_memory_mode:
pipeline.enable_sequential_cpu_offload()
else:
pipeline.enable_model_cpu_offload()
generator = torch.Generator(device="cuda").manual_seed(seed)
if lora_path is not None:
pipeline = merge_lora(pipeline, lora_path, lora_weight)
if partial_video_length is not None:
init_frames = 0
last_frames = init_frames + partial_video_length
while init_frames < video_length:
if last_frames >= video_length:
if pipeline.vae.quant_conv.weight.ndim==5:
mini_batch_encoder = 4
_partial_video_length = video_length - init_frames
_partial_video_length = int((_partial_video_length - 1) // vae.config.temporal_compression_ratio * vae.config.temporal_compression_ratio) + 1
else:
_partial_video_length = video_length - init_frames
if _partial_video_length <= 0:
break
else:
_partial_video_length = partial_video_length
input_video, input_video_mask, clip_image = get_image_to_video_latent(validation_image, None, video_length=_partial_video_length, sample_size=sample_size)
with torch.no_grad():
sample = pipeline(
prompt,
num_frames = _partial_video_length,
negative_prompt = negative_prompt,
height = sample_size[0],
width = sample_size[1],
generator = generator,
guidance_scale = guidance_scale,
num_inference_steps = num_inference_steps,
video = input_video,
mask_video = input_video_mask
).videos
if init_frames != 0:
mix_ratio = torch.from_numpy(
np.array([float(_index) / float(overlap_video_length) for _index in range(overlap_video_length)], np.float32)
).unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
new_sample[:, :, -overlap_video_length:] = new_sample[:, :, -overlap_video_length:] * (1 - mix_ratio) + \
sample[:, :, :overlap_video_length] * mix_ratio
new_sample = torch.cat([new_sample, sample[:, :, overlap_video_length:]], dim = 2)
sample = new_sample
else:
new_sample = sample
if last_frames >= video_length:
break
validation_image = [
Image.fromarray(
(sample[0, :, _index].transpose(0, 1).transpose(1, 2) * 255).numpy().astype(np.uint8)
) for _index in range(-overlap_video_length, 0)
]
init_frames = init_frames + _partial_video_length - overlap_video_length
last_frames = init_frames + _partial_video_length
else:
video_length = int((video_length - 1) // vae.config.temporal_compression_ratio * vae.config.temporal_compression_ratio) + 1 if video_length != 1 else 1
input_video, input_video_mask, clip_image = get_image_to_video_latent(validation_image_start, validation_image_end, video_length=video_length, sample_size=sample_size)
with torch.no_grad():
sample = pipeline(
prompt,
num_frames = video_length,
negative_prompt = negative_prompt,
height = sample_size[0],
width = sample_size[1],
generator = generator,
guidance_scale = guidance_scale,
num_inference_steps = num_inference_steps,
video = input_video,
mask_video = input_video_mask
).videos
if lora_path is not None:
pipeline = unmerge_lora(pipeline, lora_path, lora_weight)
if not os.path.exists(save_path):
os.makedirs(save_path, exist_ok=True)
index = len([path for path in os.listdir(save_path)]) + 1
prefix = str(index).zfill(8)
if video_length == 1:
video_path = os.path.join(save_path, prefix + ".png")
image = sample[0, :, 0]
image = image.transpose(0, 1).transpose(1, 2)
image = (image * 255).numpy().astype(np.uint8)
image = Image.fromarray(image)
image.save(video_path)
else:
video_path = os.path.join(save_path, prefix + ".mp4")
save_videos_grid(sample, video_path, fps=fps)
|