Spaces:
Sleeping
Sleeping
Create Sapp.py
Browse files
Sapp.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from PIL import Image
|
3 |
+
import numpy as np
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
from cal import load_model, predict_image, calculate_calories
|
6 |
+
|
7 |
+
# Load the model
|
8 |
+
model = load_model()
|
9 |
+
|
10 |
+
# Set up the sidebar
|
11 |
+
st.sidebar.title("Green Food Calorie Detector")
|
12 |
+
st.sidebar.write("Upload an image or use your camera to take a picture.")
|
13 |
+
|
14 |
+
option = st.sidebar.selectbox(
|
15 |
+
'How would you like to provide the image?',
|
16 |
+
('Upload an image', 'Use camera')
|
17 |
+
)
|
18 |
+
|
19 |
+
image_path = None
|
20 |
+
if option == 'Upload an image':
|
21 |
+
uploaded_file = st.sidebar.file_uploader("Choose an image...", type=["jpg", "jpeg", "png", "webp"])
|
22 |
+
if uploaded_file is not None:
|
23 |
+
image = Image.open(uploaded_file)
|
24 |
+
if image.mode == 'RGBA':
|
25 |
+
image = image.convert('RGB')
|
26 |
+
image_path = "uploaded_image.jpg"
|
27 |
+
image.save(image_path)
|
28 |
+
elif option == 'Use camera':
|
29 |
+
camera_image = st.sidebar.camera_input("Take a picture")
|
30 |
+
if camera_image is not None:
|
31 |
+
image = Image.open(camera_image)
|
32 |
+
if image.mode == 'RGBA':
|
33 |
+
image = image.convert('RGB')
|
34 |
+
image_path = "camera_image.jpg"
|
35 |
+
image.save(image_path)
|
36 |
+
|
37 |
+
if image_path:
|
38 |
+
# Display the image and classification results in columns
|
39 |
+
col1, col2 = st.columns(2)
|
40 |
+
|
41 |
+
with col1:
|
42 |
+
st.image(image, caption='Captured Image.', use_column_width=True)
|
43 |
+
st.write("")
|
44 |
+
st.write("Classifying...")
|
45 |
+
|
46 |
+
# Predict the image
|
47 |
+
image_with_boxes, detection_details = predict_image(image_path, model)
|
48 |
+
|
49 |
+
with col2:
|
50 |
+
# Display the image with bounding boxes and labels
|
51 |
+
st.image(image_with_boxes, caption='Processed Image.', use_column_width=True)
|
52 |
+
|
53 |
+
# Calculate and display detected items and their calories
|
54 |
+
detected_items = calculate_calories(detection_details)
|
55 |
+
st.markdown("<h3>Detection Results:</h3>", unsafe_allow_html=True)
|
56 |
+
for item, calories, confidence in detected_items:
|
57 |
+
st.markdown(f"<p style='font-size:18px;'>✓ Detected {item} ({calories} cal/100g) - Confidence: {confidence:.2%}</p>", unsafe_allow_html=True)
|
58 |
+
|
59 |
+
# Footer
|
60 |
+
st.markdown("""
|
61 |
+
<style>
|
62 |
+
.footer {
|
63 |
+
position: fixed;
|
64 |
+
left: 0;
|
65 |
+
bottom: 0;
|
66 |
+
width: 100%;
|
67 |
+
background-color: #f1f1f1;
|
68 |
+
color: black;
|
69 |
+
text-align: center;
|
70 |
+
padding: 10px;
|
71 |
+
}
|
72 |
+
</style>
|
73 |
+
<div class="footer">
|
74 |
+
<p>Green Food Calorie Detector © 2023</p>
|
75 |
+
</div>
|
76 |
+
""", unsafe_allow_html=True)
|