# cal.py import torch from ultralytics import YOLO import cv2 import numpy as np import matplotlib.pyplot as plt import streamlit as st # Configuration class class Config: CLASSES = ['asparagus', 'avocados', 'broccoli', 'cabbage', 'celery', 'cucumber', 'green_apples', 'green_beans', 'green_capsicum', 'green_grapes', 'kiwifruit', 'lettuce', 'limes', 'peas', 'spinach'] CALORIES_DICT = { 'asparagus': 20, 'avocados': 160, 'broccoli': 55, 'cabbage': 25, 'celery': 16, 'cucumber': 16, 'green_apples': 52, 'green_beans': 31, 'green_capsicum': 20, 'green_grapes': 69, 'kiwifruit': 61, 'lettuce': 15, 'limes': 30, 'peas': 81, 'spinach': 23 } # Load the model @st.cache_resource def load_model(): model = YOLO('./best.pt') return model # Function to make predictions on a single image def predict_image(image_path, model, conf_threshold=0.03): # Perform inference on the image results = model.predict( source=image_path, imgsz=640, conf=conf_threshold ) # Load the image for visualization image = cv2.imread(image_path) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # To store detailed information about detections detection_details = [] # Iterate over detections for result in results[0].boxes.data: # Extract bounding box coordinates, confidence score, and class ID x1, y1, x2, y2, confidence, class_id = result.cpu().numpy() # Draw the bounding box with top confidence score cv2.rectangle(image, (int(x1), int(y1)), (int(x2), int(y2)), color=(0, 255, 0), thickness=2) label = f"{Config.CLASSES[int(class_id)]}: {confidence:.2f}" cv2.putText(image, label, (int(x1), int(y1) - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), thickness=1) # Save details for printing below detection_details.append({ "class": Config.CLASSES[int(class_id)], "top_confidence": confidence, "bbox": (x1, y1, x2, y2) }) return image, detection_details # Function to calculate detected items and their calories def calculate_calories(detection_details): detected_items = [] for det in detection_details: item = det["class"] calories = Config.CALORIES_DICT[item] confidence = det["top_confidence"] detected_items.append((item, calories, confidence)) return detected_items