File size: 1,966 Bytes
080cf4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c476863
080cf4b
 
 
 
079db35
080cf4b
 
 
 
 
 
 
 
 
eeb55b5
080cf4b
c476863
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from datetime import datetime

print('{}:loading...'.format(datetime.now().strftime('%Y-%m-%d %H:%M:%S')))

tokenizer = AutoTokenizer.from_pretrained('line-corporation/japanese-large-lm-1.7b-instruction-sft', use_fast=False)
model = AutoModelForCausalLM.from_pretrained('line-corporation/japanese-large-lm-1.7b-instruction-sft')
#tokenizer = AutoTokenizer.from_pretrained('line-corporation/japanese-large-lm-3.6b-instruction-sft', use_fast=False)
#model = AutoModelForCausalLM.from_pretrained('line-corporation/japanese-large-lm-3.6b-instruction-sft')

if torch.cuda.is_available():
	model.half()
	model = model.to('cuda')

generator = pipeline('text-generation', model=model, tokenizer=tokenizer, device=model.device)
print('{}:done.'.format(datetime.now().strftime('%Y-%m-%d %H:%M:%S')))

def generate(input_text, maxlen):
	input = f'ユーザー: {input_text}\nシステム: '
	output = generator(
		input,
		max_length=maxlen,
		do_sample=True,
		temperature=0.7,
		top_p=0.9,
		top_k=0,
		repetition_penalty=1.1,
		num_beams=1,
		num_return_sequences=1,
		pad_token_id=tokenizer.pad_token_id,
		bos_token_id=tokenizer.bos_token_id,
		eos_token_id=tokenizer.eos_token_id
	)
	generated_text = output[0]['generated_text'][len(input) + 1:]
	return generated_text

with gr.Blocks(title='question answering ja') as app:
	gr.Markdown('# Question Answering JA')

	chatbot = gr.Chatbot(label='answer')
	msg = gr.Textbox(label='question')
	maxlen = gr.Slider(minimum=30, maximum=100, value=30, step=1, label='max length')
	clear = gr.ClearButton([msg, chatbot])

	def respond(message, maxlen, chat_history):
		if message == '':
			return '', chat_history
		bot_message = generate(message, maxlen)
		chat_history.append((message, bot_message))
		return '', chat_history

	msg.submit(respond, [msg, maxlen, chatbot], [msg, chatbot], concurrency_limit=20)

app.launch()