Spaces:
Running
Running
File size: 10,379 Bytes
b310def c1ac6cf b310def f9e54c0 9587328 b310def f9e54c0 b310def f9e54c0 b310def f9e54c0 b310def f9e54c0 b310def f9e54c0 b310def 9587328 3b8b027 9587328 3b8b027 9587328 3b8b027 9587328 51e0a26 9587328 c1ac6cf 9587328 c1ac6cf 9587328 c1ac6cf 9587328 c1ac6cf b310def 8b3957e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 |
# coding=utf-8
from io import BytesIO
from typing import Optional
from fastapi import FastAPI, File, UploadFile, HTTPException, Depends
from fastapi.middleware.cors import CORSMiddleware
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
from fastapi.responses import HTMLResponse
import numpy as np
import torch
import torchaudio
from funasr import AutoModel
from dotenv import load_dotenv
import os
import time
import gradio as gr
# 加载环境变量
load_dotenv()
# 获取API Token
API_TOKEN = os.getenv("API_TOKEN")
if not API_TOKEN:
raise RuntimeError("API_TOKEN environment variable is not set")
# 设置认证
security = HTTPBearer()
app = FastAPI(
title="SenseVoice API",
description="语音识别 API 服务",
version="1.0.0"
)
# 允许跨域请求
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# 初始化模型
model = AutoModel(
model="FunAudioLLM/SenseVoiceSmall",
vad_model="iic/speech_fsmn_vad_zh-cn-16k-common-pytorch",
vad_kwargs={"max_single_segment_time": 30000},
hub="hf",
device="cuda"
)
# 复用原有的格式化函数
emo_dict = {
"<|HAPPY|>": "😊",
"<|SAD|>": "😔",
"<|ANGRY|>": "😡",
"<|NEUTRAL|>": "",
"<|FEARFUL|>": "😰",
"<|DISGUSTED|>": "🤢",
"<|SURPRISED|>": "😮",
}
event_dict = {
"<|BGM|>": "🎼",
"<|Speech|>": "",
"<|Applause|>": "👏",
"<|Laughter|>": "😀",
"<|Cry|>": "😭",
"<|Sneeze|>": "🤧",
"<|Breath|>": "",
"<|Cough|>": "🤧",
}
emoji_dict = {
"<|nospeech|><|Event_UNK|>": "❓",
"<|zh|>": "",
"<|en|>": "",
"<|yue|>": "",
"<|ja|>": "",
"<|ko|>": "",
"<|nospeech|>": "",
"<|HAPPY|>": "😊",
"<|SAD|>": "😔",
"<|ANGRY|>": "😡",
"<|NEUTRAL|>": "",
"<|BGM|>": "🎼",
"<|Speech|>": "",
"<|Applause|>": "👏",
"<|Laughter|>": "😀",
"<|FEARFUL|>": "😰",
"<|DISGUSTED|>": "🤢",
"<|SURPRISED|>": "😮",
"<|Cry|>": "😭",
"<|EMO_UNKNOWN|>": "",
"<|Sneeze|>": "🤧",
"<|Breath|>": "",
"<|Cough|>": "😷",
"<|Sing|>": "",
"<|Speech_Noise|>": "",
"<|withitn|>": "",
"<|woitn|>": "",
"<|GBG|>": "",
"<|Event_UNK|>": "",
}
lang_dict = {
"<|zh|>": "<|lang|>",
"<|en|>": "<|lang|>",
"<|yue|>": "<|lang|>",
"<|ja|>": "<|lang|>",
"<|ko|>": "<|lang|>",
"<|nospeech|>": "<|lang|>",
}
emo_set = {"😊", "😔", "😡", "😰", "🤢", "😮"}
event_set = {"🎼", "👏", "😀", "😭", "🤧", "😷"}
def format_str(s):
for sptk in emoji_dict:
s = s.replace(sptk, emoji_dict[sptk])
return s
def format_str_v2(s):
sptk_dict = {}
for sptk in emoji_dict:
sptk_dict[sptk] = s.count(sptk)
s = s.replace(sptk, "")
emo = "<|NEUTRAL|>"
for e in emo_dict:
if sptk_dict[e] > sptk_dict[emo]:
emo = e
for e in event_dict:
if sptk_dict[e] > 0:
s = event_dict[e] + s
s = s + emo_dict[emo]
for emoji in emo_set.union(event_set):
s = s.replace(" " + emoji, emoji)
s = s.replace(emoji + " ", emoji)
return s.strip()
def format_str_v3(s):
def get_emo(s):
return s[-1] if s[-1] in emo_set else None
def get_event(s):
return s[0] if s[0] in event_set else None
s = s.replace("<|nospeech|><|Event_UNK|>", "❓")
for lang in lang_dict:
s = s.replace(lang, "<|lang|>")
s_list = [format_str_v2(s_i).strip(" ") for s_i in s.split("<|lang|>")]
new_s = " " + s_list[0]
cur_ent_event = get_event(new_s)
for i in range(1, len(s_list)):
if len(s_list[i]) == 0:
continue
if get_event(s_list[i]) == cur_ent_event and get_event(s_list[i]) != None:
s_list[i] = s_list[i][1:]
cur_ent_event = get_event(s_list[i])
if get_emo(s_list[i]) != None and get_emo(s_list[i]) == get_emo(new_s):
new_s = new_s[:-1]
new_s += s_list[i].strip().lstrip()
new_s = new_s.replace("The.", " ")
return new_s.strip()
async def process_audio(audio_data: bytes, language: str = "auto") -> str:
"""处理音频数据并返回识别结果"""
try:
# 将字节数据转换为 numpy 数组
audio_buffer = BytesIO(audio_data)
waveform, sample_rate = torchaudio.load(audio_buffer)
# 转换为单声道
if waveform.shape[0] > 1:
waveform = waveform.mean(dim=0)
# 转换为 numpy array 并归一化
input_wav = waveform.numpy().astype(np.float32)
# 重采样到 16kHz
if sample_rate != 16000:
resampler = torchaudio.transforms.Resample(sample_rate, 16000)
input_wav = resampler(torch.from_numpy(input_wav)[None, :])[0, :].numpy()
# 模型推理
text = model.generate(
input=input_wav,
cache={},
language=language,
use_itn=True,
batch_size_s=500,
merge_vad=True
)
# 格式化结果
result = text[0]["text"]
result = format_str_v3(result)
return result
except Exception as e:
raise HTTPException(status_code=500, detail=f"音频处理失败:{str(e)}")
async def verify_token(credentials: HTTPAuthorizationCredentials = Depends(security)):
"""验证Bearer Token"""
if credentials.credentials != API_TOKEN:
raise HTTPException(
status_code=401,
detail="Invalid authentication token",
headers={"WWW-Authenticate": "Bearer"}
)
return credentials
@app.post("/v1/audio/transcriptions")
async def transcribe_audio(
file: UploadFile = File(...),
model: Optional[str] = "FunAudioLLM/SenseVoiceSmall",
language: Optional[str] = "auto",
token: HTTPAuthorizationCredentials = Depends(verify_token)
):
"""音频转写接口
Args:
file: 音频文件(支持常见音频格式)
model: 模型名称,目前仅支持 FunAudioLLM/SenseVoiceSmall
language: 语言代码,支持 auto/zh/en/yue/ja/ko/nospeech
Returns:
{
"text": "识别结果",
"error_code": 0,
"error_msg": "",
"process_time": 1.234 # 处理时间(秒)
}
"""
start_time = time.time()
try:
if not file.filename.lower().endswith((".mp3", ".wav", ".flac", ".ogg", ".m4a")):
return {
"text": "",
"error_code": 400,
"error_msg": "不支持的音频格式",
"process_time": time.time() - start_time
}
if model != "FunAudioLLM/SenseVoiceSmall":
return {
"text": "",
"error_code": 400,
"error_msg": "不支持的模型",
"process_time": time.time() - start_time
}
if language not in ["auto", "zh", "en", "yue", "ja", "ko", "nospeech"]:
return {
"text": "",
"error_code": 400,
"error_msg": "不支持的语言",
"process_time": time.time() - start_time
}
content = await file.read()
text = await process_audio(content, language)
return {
"text": text,
"error_code": 0,
"error_msg": "",
"process_time": time.time() - start_time
}
except Exception as e:
return {
"text": "",
"error_code": 500,
"error_msg": str(e),
"process_time": time.time() - start_time
}
def transcribe_audio_gradio(audio, language="auto"):
"""Gradio界面的音频转写函数"""
try:
if audio is None:
return "请上传音频文件"
# 读取音频数据
fs, input_wav = audio
print('------------------------------')
print(fs, type(fs))
print(input_wav, type(input_wav))
print('------------------------------')
input_wav = input_wav.astype(np.float32) / np.iinfo(np.int16).max
# 转换为单声道
if len(input_wav.shape) > 1:
input_wav = input_wav.mean(-1)
# 重采样到16kHz
if fs != 16000:
resampler = torchaudio.transforms.Resample(fs, 16000)
input_wav_t = torch.from_numpy(input_wav).to(torch.float32)
input_wav = resampler(input_wav_t[None, :])[0, :].numpy()
# 模型推理
text = model.generate(
input=input_wav,
cache={},
language=language,
use_itn=True,
batch_size_s=500,
merge_vad=True
)
# 格式化结果
result = text[0]["text"]
result = format_str_v3(result)
return result
except Exception as e:
return f"处理失败:{str(e)}"
# 创建Gradio界面
demo = gr.Interface(
fn=transcribe_audio_gradio,
inputs=[
gr.Audio(sources=["microphone", "upload"], type="numpy", label="上传音频或使用麦克风录音"),
gr.Dropdown(
choices=["auto", "zh", "en", "yue", "ja", "ko", "nospeech"],
value="auto",
label="选择语言"
)
],
outputs=gr.Textbox(label="识别结果"),
title="SenseVoice 语音识别",
description="支持中文、英语、粤语、日语、韩语等多种语言的语音转写服务",
examples=[
["examples/chinese.wav", "zh"],
["examples/english.wav", "en"]
]
)
# 将Gradio应用挂载到FastAPI
app = gr.mount_gradio_app(app, demo, path="/")
@app.get("/docs", include_in_schema=False)
async def custom_swagger_ui_html():
return HTMLResponse("""
<!DOCTYPE html>
<html>
<head>
<title>SenseVoice API 文档</title>
<meta http-equiv="refresh" content="0;url=/docs/" />
</head>
<body>
<p>正在跳转到API文档...</p>
</body>
</html>
""")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)
|