Spaces:
Running
Running
File size: 12,641 Bytes
b310def 60b9834 5c7869e 60b9834 5899d37 b310def 60b9834 b310def c1ac6cf b310def f9e54c0 9587328 b310def 60b9834 b310def 660c142 b310def 60b9834 660c142 b310def 60b9834 660c142 b310def 60b9834 b310def 660c142 b310def 660c142 b310def 60b9834 660c142 b310def 60b9834 b310def 60b9834 b310def 60b9834 b310def 60b9834 b310def 60b9834 b310def 60b9834 b310def 60b9834 b310def 60b9834 b310def 60b9834 b310def 5899d37 660c142 5899d37 660c142 373e485 b310def 660c142 b310def 5899d37 660c142 5899d37 b310def 660c142 b310def 60b9834 b310def 660c142 b310def 60b9834 660c142 b310def 660c142 b310def 660c142 b310def f9e54c0 b310def 660c142 f9e54c0 660c142 f9e54c0 660c142 f9e54c0 660c142 f9e54c0 660c142 f9e54c0 660c142 f9e54c0 660c142 b310def f9e54c0 b310def f9e54c0 b310def 60b9834 9587328 60b9834 9587328 60b9834 3b8b027 9587328 660c142 5899d37 9587328 60b9834 9587328 60b9834 9587328 60b9834 9587328 60b9834 9587328 60b9834 9587328 2711de6 9587328 60b9834 9587328 60b9834 9587328 c1ac6cf 60b9834 9587328 c1ac6cf 60b9834 c1ac6cf 9587328 c1ac6cf b310def 8b3957e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 |
# coding=utf-8
from io import BytesIO
from typing import Optional, Dict, Any, List, Set, Union, Tuple
# System Libraries
import os
import time
import asyncio
# Third-party imports
from fastapi import FastAPI, File, UploadFile, HTTPException, Depends
from fastapi.middleware.cors import CORSMiddleware
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
from fastapi.responses import HTMLResponse
import numpy as np
import torch
import torchaudio
from funasr import AutoModel
from dotenv import load_dotenv
import os
import time
import gradio as gr
# ๅ ่ฝฝ็ฏๅขๅ้
load_dotenv()
# ่ทๅAPI Token
API_TOKEN: str = os.getenv("API_TOKEN")
if not API_TOKEN:
raise RuntimeError("API_TOKEN environment variable is not set")
# ่ฎพ็ฝฎ่ฎค่ฏ
security = HTTPBearer()
app = FastAPI(
title="SenseVoice API",
description="Speech To Text API Service",
version="1.0.0"
)
# ๅ
่ฎธ่ทจๅ่ฏทๆฑ
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# ๅๅงๅๆจกๅ
model = AutoModel(
model="FunAudioLLM/SenseVoiceSmall",
vad_model="iic/speech_fsmn_vad_zh-cn-16k-common-pytorch",
vad_kwargs={"max_single_segment_time": 30000},
hub="hf",
device="cuda"
)
emotion_dict: Dict[str, str] = {
"<|HAPPY|>": "๐",
"<|SAD|>": "๐",
"<|ANGRY|>": "๐ก",
"<|NEUTRAL|>": "",
"<|FEARFUL|>": "๐ฐ",
"<|DISGUSTED|>": "๐คข",
"<|SURPRISED|>": "๐ฎ",
}
event_dict: Dict[str, str] = {
"<|BGM|>": "๐ผ",
"<|Speech|>": "",
"<|Applause|>": "๐",
"<|Laughter|>": "๐",
"<|Cry|>": "๐ญ",
"<|Sneeze|>": "๐คง",
"<|Breath|>": "",
"<|Cough|>": "๐คง",
}
emoji_dict: Dict[str, str] = {
"<|nospeech|><|Event_UNK|>": "โ",
"<|zh|>": "",
"<|en|>": "",
"<|yue|>": "",
"<|ja|>": "",
"<|ko|>": "",
"<|nospeech|>": "",
"<|HAPPY|>": "๐",
"<|SAD|>": "๐",
"<|ANGRY|>": "๐ก",
"<|NEUTRAL|>": "",
"<|BGM|>": "๐ผ",
"<|Speech|>": "",
"<|Applause|>": "๐",
"<|Laughter|>": "๐",
"<|FEARFUL|>": "๐ฐ",
"<|DISGUSTED|>": "๐คข",
"<|SURPRISED|>": "๐ฎ",
"<|Cry|>": "๐ญ",
"<|EMO_UNKNOWN|>": "",
"<|Sneeze|>": "๐คง",
"<|Breath|>": "",
"<|Cough|>": "๐ท",
"<|Sing|>": "",
"<|Speech_Noise|>": "",
"<|withitn|>": "",
"<|woitn|>": "",
"<|GBG|>": "",
"<|Event_UNK|>": "",
}
lang_dict: Dict[str, str] = {
"<|zh|>": "<|lang|>",
"<|en|>": "<|lang|>",
"<|yue|>": "<|lang|>",
"<|ja|>": "<|lang|>",
"<|ko|>": "<|lang|>",
"<|nospeech|>": "<|lang|>",
}
emo_set: Set[str] = {"๐", "๐", "๐ก", "๐ฐ", "๐คข", "๐ฎ"}
event_set: Set[str] = {"๐ผ", "๐", "๐", "๐ญ", "๐คง", "๐ท"}
def format_text_with_emotion(text: str) -> str:
"""Format text with emotion and event markers"""
token_count: Dict[str, int] = {}
original_text = text
for token in emoji_dict:
token_count[token] = text.count(token)
# Determine dominant emotion
dominant_emotion = "<|NEUTRAL|>"
for emotion in emotion_dict:
if token_count[emotion] > token_count[dominant_emotion]:
dominant_emotion = emotion
# Add event markers
text = original_text
for event in event_dict:
if token_count[event] > 0:
text = event_dict[event] + text
# Replace all tokens with their emoji equivalents
for token in emoji_dict:
text = text.replace(token, emoji_dict[token])
# Add dominant emotion
text = text + emotion_dict[dominant_emotion]
# Clean up emoji spacing
for emoji in emo_set.union(event_set):
text = text.replace(" " + emoji, emoji)
text = text.replace(emoji + " ", emoji)
return text.strip()
def format_text_advanced(text: str) -> str:
"""Advanced text formatting with multilingual and complex token handling"""
def get_emotion(text: str) -> Optional[str]:
return text[-1] if text[-1] in emo_set else None
def get_event(text: str) -> Optional[str]:
return text[0] if text[0] in event_set else None
# Handle special cases
text = text.replace("<|nospeech|><|Event_UNK|>", "โ")
for lang in lang_dict:
text = text.replace(lang, "<|lang|>")
# Process text segments
text_segments: List[str] = [format_text_with_emotion(segment).strip() for segment in text.split("<|lang|>")]
formatted_text = " " + text_segments[0]
current_event = get_event(formatted_text)
# Merge segments
for i in range(1, len(text_segments)):
if not text_segments[i]:
continue
if get_event(text_segments[i]) == current_event and get_event(text_segments[i]) is not None:
text_segments[i] = text_segments[i][1:]
current_event = get_event(text_segments[i])
if get_emotion(text_segments[i]) is not None and get_emotion(text_segments[i]) == get_emotion(formatted_text):
formatted_text = formatted_text[:-1]
formatted_text += text_segments[i].strip()
formatted_text = formatted_text.replace("The.", " ")
return formatted_text.strip()
async def audio_stt(audio: torch.Tensor, sample_rate: int, language: str = "auto") -> str:
"""Process audio tensor and perform speech-to-text conversion.
Args:
audio: Input audio tensor
sample_rate: Audio sample rate in Hz
language: Target language code (auto/zh/en/yue/ja/ko/nospeech)
Returns:
str: Transcribed and formatted text result
"""
try:
# Normalize
if audio.dtype != torch.float32:
if audio.dtype == torch.int16:
audio = audio.float() / torch.iinfo(torch.int16).max
elif audio.dtype == torch.int32:
audio = audio.float() / torch.iinfo(torch.int32).max
else:
audio = audio.float()
# Make sure audio in correct range
if audio.abs().max() > 1.0:
audio = audio / audio.abs().max()
# Convert to mono channel
if len(audio.shape) > 1:
audio = audio.mean(dim=0)
audio = audio.squeeze()
# Resample
if sample_rate != 16000:
resampler = torchaudio.transforms.Resample(
orig_freq=sample_rate,
new_freq=16000
)
audio = resampler(audio.unsqueeze(0)).squeeze(0)
text = model.generate(
input=audio,
cache={},
language=language,
use_itn=True,
batch_size_s=500,
merge_vad=True
)
# ๆ ผๅผๅ็ปๆ
result = text[0]["text"]
return format_text_advanced(result)
except Exception as e:
raise HTTPException(
status_code=500,
detail=f"Audio processing failed in audio_stt: {str(e)}"
)
async def process_audio(audio_data: bytes, language: str = "auto") -> str:
"""Process audio data and return transcription result.
Args:
audio_data: Raw audio data in bytes
language: Target language code
Returns:
str: Transcribed and formatted text
Raises:
HTTPException: If audio processing fails
"""
try:
audio_buffer = BytesIO(audio_data)
waveform, sample_rate = torchaudio.load(
uri=audio_buffer,
normalize=True,
channels_first=True
)
result = await audio_stt(waveform, sample_rate, language)
return result
except Exception as e:
raise HTTPException(
status_code=500,
detail=f"Audio processing failed: {str(e)}"
)
async def verify_token(credentials: HTTPAuthorizationCredentials = Depends(security)) -> HTTPAuthorizationCredentials:
"""Verify Bearer Token authentication"""
if credentials.credentials != API_TOKEN:
raise HTTPException(
status_code=401,
detail="Invalid authentication token",
headers={"WWW-Authenticate": "Bearer"}
)
return credentials
@app.post("/v1/audio/transcriptions")
async def transcribe_audio(
file: UploadFile = File(...),
model: str = "FunAudioLLM/SenseVoiceSmall",
language: str = "auto",
token: HTTPAuthorizationCredentials = Depends(verify_token)
) -> Dict[str, Union[str, int, float]]:
"""Audio transcription endpoint.
Args:
file: Audio file (supports mp3, wav, flac, ogg, m4a)
model: Model name
language: Language code
token: Authentication token
Returns:
Dict containing transcription result and metadata
"""
start_time = time.time()
try:
# Check the file format
if not file.filename.lower().endswith((".mp3", ".wav", ".flac", ".ogg", ".m4a")):
return {
"text": "",
"error_code": 400,
"error_msg": "ไธๆฏๆ็้ณ้ขๆ ผๅผ",
"process_time": time.time() - start_time
}
# Check the model
if model != "FunAudioLLM/SenseVoiceSmall":
return {
"text": "",
"error_code": 400,
"error_msg": "ไธๆฏๆ็ๆจกๅ",
"process_time": time.time() - start_time
}
# Check the language
if language not in ["auto", "zh", "en", "yue", "ja", "ko", "nospeech"]:
return {
"text": "",
"error_code": 400,
"error_msg": "ไธๆฏๆ็่ฏญ่จ",
"process_time": time.time() - start_time
}
# STT
content = await file.read()
text = await process_audio(content, language)
return {
"text": text,
"error_code": 0,
"error_msg": "",
"process_time": time.time() - start_time
}
except Exception as e:
return {
"text": "",
"error_code": 500,
"error_msg": str(e),
"process_time": time.time() - start_time
}
def transcribe_audio_gradio(audio: Optional[Tuple[int, np.ndarray]], language: str = "auto") -> str:
"""Gradio interface for audio transcription"""
try:
if audio is None:
return "Please upload an audio file"
# Extract audio data
sample_rate, input_wav = audio
# Normalize audio
input_wav = input_wav.astype(np.float32) / np.iinfo(np.int16).max
# Model Inference
input_wav = torch.from_numpy(input_wav)
result = asyncio.run(audio_stt(input_wav, sample_rate, language))
return result
except Exception as e:
return f"Processing failed: {str(e)}"
# Create Gradio interface with localized labels
demo = gr.Interface(
fn=transcribe_audio_gradio,
inputs=[
gr.Audio(
sources=["upload", "microphone"],
type="numpy",
label="Upload audio or record from microphone"
),
gr.Dropdown(
choices=["auto", "zh", "en", "yue", "ja", "ko", "nospeech"],
value="auto",
label="Select Language"
)
],
outputs=gr.Textbox(label="Recognition Result"),
title="SenseVoice Speech Recognition",
description="Multi-language speech transcription service supporting Chinese, English, Cantonese, Japanese, and Korean",
examples=[
["examples/zh.mp3", "zh"],
["examples/en.mp3", "en"],
]
)
# Mount Gradio app to FastAPI
app = gr.mount_gradio_app(app, demo, path="/")
# Custom Swagger UI redirect
@app.get("/docs", include_in_schema=False)
async def custom_swagger_ui_html():
return HTMLResponse("""
<!DOCTYPE html>
<html>
<head>
<title>SenseVoice API Documentation</title>
<meta http-equiv="refresh" content="0;url=/docs/" />
</head>
<body>
<p>Redirecting to API documentation...</p>
</body>
</html>
""")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)
|