megatrump's picture
fix concat
a9332dc
raw
history blame
12.5 kB
# coding=utf-8
from io import BytesIO
from typing import Optional, Dict, Any, List, Set, Union, Tuple
import os
import time
# Third-party imports
from fastapi import FastAPI, File, UploadFile, HTTPException, Depends
from fastapi.middleware.cors import CORSMiddleware
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
from fastapi.responses import HTMLResponse
import numpy as np
import torch
import torchaudio
from funasr import AutoModel
from dotenv import load_dotenv
import os
import time
import gradio as gr
# ๅŠ ่ฝฝ็Žฏๅขƒๅ˜้‡
load_dotenv()
# ่Žทๅ–API Token
API_TOKEN: str = os.getenv("API_TOKEN")
if not API_TOKEN:
raise RuntimeError("API_TOKEN environment variable is not set")
# ่ฎพ็ฝฎ่ฎค่ฏ
security = HTTPBearer()
app = FastAPI(
title="SenseVoice API",
description="่ฏญ้Ÿณ่ฏ†ๅˆซ API ๆœๅŠก",
version="1.0.0"
)
# ๅ…่ฎธ่ทจๅŸŸ่ฏทๆฑ‚
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# ๅˆๅง‹ๅŒ–ๆจกๅž‹
model = AutoModel(
model="FunAudioLLM/SenseVoiceSmall",
vad_model="iic/speech_fsmn_vad_zh-cn-16k-common-pytorch",
vad_kwargs={"max_single_segment_time": 30000},
hub="hf",
device="cuda"
)
# ๅค็”จๅŽŸๆœ‰็š„ๆ ผๅผๅŒ–ๅ‡ฝๆ•ฐ
emotion_dict: Dict[str, str] = {
"<|HAPPY|>": "๐Ÿ˜Š",
"<|SAD|>": "๐Ÿ˜”",
"<|ANGRY|>": "๐Ÿ˜ก",
"<|NEUTRAL|>": "",
"<|FEARFUL|>": "๐Ÿ˜ฐ",
"<|DISGUSTED|>": "๐Ÿคข",
"<|SURPRISED|>": "๐Ÿ˜ฎ",
}
event_dict: Dict[str, str] = {
"<|BGM|>": "๐ŸŽผ",
"<|Speech|>": "",
"<|Applause|>": "๐Ÿ‘",
"<|Laughter|>": "๐Ÿ˜€",
"<|Cry|>": "๐Ÿ˜ญ",
"<|Sneeze|>": "๐Ÿคง",
"<|Breath|>": "",
"<|Cough|>": "๐Ÿคง",
}
emoji_dict: Dict[str, str] = {
"<|nospeech|><|Event_UNK|>": "โ“",
"<|zh|>": "",
"<|en|>": "",
"<|yue|>": "",
"<|ja|>": "",
"<|ko|>": "",
"<|nospeech|>": "",
"<|HAPPY|>": "๐Ÿ˜Š",
"<|SAD|>": "๐Ÿ˜”",
"<|ANGRY|>": "๐Ÿ˜ก",
"<|NEUTRAL|>": "",
"<|BGM|>": "๐ŸŽผ",
"<|Speech|>": "",
"<|Applause|>": "๐Ÿ‘",
"<|Laughter|>": "๐Ÿ˜€",
"<|FEARFUL|>": "๐Ÿ˜ฐ",
"<|DISGUSTED|>": "๐Ÿคข",
"<|SURPRISED|>": "๐Ÿ˜ฎ",
"<|Cry|>": "๐Ÿ˜ญ",
"<|EMO_UNKNOWN|>": "",
"<|Sneeze|>": "๐Ÿคง",
"<|Breath|>": "",
"<|Cough|>": "๐Ÿ˜ท",
"<|Sing|>": "",
"<|Speech_Noise|>": "",
"<|withitn|>": "",
"<|woitn|>": "",
"<|GBG|>": "",
"<|Event_UNK|>": "",
}
lang_dict: Dict[str, str] = {
"<|zh|>": "<|lang|>",
"<|en|>": "<|lang|>",
"<|yue|>": "<|lang|>",
"<|ja|>": "<|lang|>",
"<|ko|>": "<|lang|>",
"<|nospeech|>": "<|lang|>",
}
emo_set: Set[str] = {"๐Ÿ˜Š", "๐Ÿ˜”", "๐Ÿ˜ก", "๐Ÿ˜ฐ", "๐Ÿคข", "๐Ÿ˜ฎ"}
event_set: Set[str] = {"๐ŸŽผ", "๐Ÿ‘", "๐Ÿ˜€", "๐Ÿ˜ญ", "๐Ÿคง", "๐Ÿ˜ท"}
def format_text_basic(text: str) -> str:
"""Replace special tokens with corresponding emojis"""
for token in emoji_dict:
text = text.replace(token, emoji_dict[token])
return text
def format_text_with_emotion(text: str) -> str:
"""Format text with emotion and event markers"""
token_count: Dict[str, int] = {}
original_text = text
for token in emoji_dict:
token_count[token] = text.count(token)
# Determine dominant emotion
dominant_emotion = "<|NEUTRAL|>"
for emotion in emotion_dict:
if token_count[emotion] > token_count[dominant_emotion]:
dominant_emotion = emotion
# Add event markers
text = original_text
for event in event_dict:
if token_count[event] > 0:
text = event_dict[event] + text
# Replace all tokens with their emoji equivalents
for token in emoji_dict:
text = text.replace(token, emoji_dict[token])
# Add dominant emotion
text = text + emotion_dict[dominant_emotion]
# Clean up emoji spacing
for emoji in emo_set.union(event_set):
text = text.replace(" " + emoji, emoji)
text = text.replace(emoji + " ", emoji)
return text.strip()
def format_text_advanced(text: str) -> str:
"""Advanced text formatting with multilingual and complex token handling"""
def get_emotion(text: str) -> Optional[str]:
return text[-1] if text[-1] in emo_set else None
def get_event(text: str) -> Optional[str]:
return text[0] if text[0] in event_set else None
# Handle special cases
text = text.replace("<|nospeech|><|Event_UNK|>", "โ“")
for lang in lang_dict:
text = text.replace(lang, "<|lang|>")
# Process text segments
text_segments: List[str] = [format_text_with_emotion(segment).strip() for segment in text.split("<|lang|>")]
formatted_text = " " + text_segments[0]
current_event = get_event(formatted_text)
# Merge segments
for i in range(1, len(text_segments)):
if not text_segments[i]:
continue
if get_event(text_segments[i]) == current_event and get_event(text_segments[i]) is not None:
text_segments[i] = text_segments[i][1:]
current_event = get_event(text_segments[i])
if get_emotion(text_segments[i]) is not None and get_emotion(text_segments[i]) == get_emotion(formatted_text):
formatted_text = formatted_text[:-1]
formatted_text += text_segments[i].strip()
formatted_text = formatted_text.replace("The.", " ")
return formatted_text.strip()
async def process_audio(audio_data: bytes, language: str = "auto") -> str:
"""Process audio data and return transcription result"""
try:
# Convert bytes to numpy array
audio_buffer = BytesIO(audio_data)
waveform, sample_rate = torchaudio.load(audio_buffer)
# Convert to mono channel
if waveform.shape[0] > 1:
waveform = waveform.mean(dim=0)
# Convert to numpy array and normalize
input_wav = waveform.numpy().astype(np.float32)
# Resample to 16kHz if needed
if sample_rate != 16000:
resampler = torchaudio.transforms.Resample(sample_rate, 16000)
input_wav = resampler(torch.from_numpy(input_wav)[None, :])[0, :].numpy()
target_length = 90 * 16000
current_length = input_wav.shape[1]
if current_length < target_length:
padding_length = target_length - current_length
padding = np.zeros((1, padding_length), dtype=np.float32)
print(input_wav.shape)
print(padding.shape)
input_wav = np.concatenate((input_wav, padding), axis=1)
# Model inference
text = model.generate(
input=input_wav,
cache={},
language=language,
use_itn=True,
batch_size_s=500,
merge_vad=True
)
# Format result
result = text[0]["text"]
result = format_text_advanced(result)
return result
except Exception as e:
import traceback
traceback.print_exc()
traceback.print_stack()
raise HTTPException(status_code=500, detail=f"Audio processing failed: {str(e)}")
async def verify_token(credentials: HTTPAuthorizationCredentials = Depends(security)) -> HTTPAuthorizationCredentials:
"""Verify Bearer Token authentication"""
if credentials.credentials != API_TOKEN:
raise HTTPException(
status_code=401,
detail="Invalid authentication token",
headers={"WWW-Authenticate": "Bearer"}
)
return credentials
@app.post("/v1/audio/transcriptions")
async def transcribe_audio(
file: UploadFile = File(...),
model: Optional[str] = "FunAudioLLM/SenseVoiceSmall",
language: Optional[str] = "auto",
token: HTTPAuthorizationCredentials = Depends(verify_token)
) -> Dict[str, Union[str, int, float]]:
"""Audio transcription endpoint
Args:
file: Audio file (supports common audio formats)
model: Model name, currently only supports FunAudioLLM/SenseVoiceSmall
language: Language code, supports auto/zh/en/yue/ja/ko/nospeech
Returns:
Dict[str, Union[str, int, float]]: {
"text": "Transcription result",
"error_code": 0,
"error_msg": "",
"process_time": 1.234 # Processing time in seconds
}
"""
start_time = time.time()
try:
# Validate file format
if not file.filename.lower().endswith((".mp3", ".wav", ".flac", ".ogg", ".m4a")):
return {
"text": "",
"error_code": 400,
"error_msg": "Unsupported audio format",
"process_time": time.time() - start_time
}
# Validate model
if model != "FunAudioLLM/SenseVoiceSmall":
return {
"text": "",
"error_code": 400,
"error_msg": "Unsupported model",
"process_time": time.time() - start_time
}
# Validate language
if language not in ["auto", "zh", "en", "yue", "ja", "ko", "nospeech"]:
return {
"text": "",
"error_code": 400,
"error_msg": "Unsupported language",
"process_time": time.time() - start_time
}
# Process audio
content = await file.read()
text = await process_audio(content, language)
return {
"text": text,
"error_code": 0,
"error_msg": "",
"process_time": time.time() - start_time
}
except Exception as e:
return {
"text": "",
"error_code": 500,
"error_msg": str(e),
"process_time": time.time() - start_time
}
def transcribe_audio_gradio(audio: Optional[Tuple[int, np.ndarray]], language: str = "auto") -> str:
"""Gradio interface for audio transcription"""
try:
if audio is None:
return "Please upload an audio file"
# Extract audio data
sample_rate, input_wav = audio
# Normalize audio
input_wav = input_wav.astype(np.float32) / np.iinfo(np.int16).max
# Convert to mono
if len(input_wav.shape) > 1:
input_wav = input_wav.mean(-1)
# Resample to 16kHz if needed
if sample_rate != 16000:
resampler = torchaudio.transforms.Resample(sample_rate, 16000)
input_wav_tensor = torch.from_numpy(input_wav).to(torch.float32)
input_wav = resampler(input_wav_tensor[None, :])[0, :].numpy()
# Model inference
text = model.generate(
input=input_wav,
cache={},
language=language,
use_itn=True,
batch_size_s=500,
merge_vad=True
)
# Format result
result = text[0]["text"]
result = format_text_advanced(result)
return result
except Exception as e:
return f"Processing failed: {str(e)}"
# Create Gradio interface with localized labels
demo = gr.Interface(
fn=transcribe_audio_gradio,
inputs=[
gr.Audio(
sources=["upload", "microphone"],
type="numpy",
label="Upload audio or record from microphone"
),
gr.Dropdown(
choices=["auto", "zh", "en", "yue", "ja", "ko", "nospeech"],
value="auto",
label="Select Language"
)
],
outputs=gr.Textbox(label="Recognition Result"),
title="SenseVoice Speech Recognition",
description="Multi-language speech transcription service supporting Chinese, English, Cantonese, Japanese, and Korean",
examples=[
["examples/zh.mp3", "zh"],
["examples/en.mp3", "en"],
]
)
# Mount Gradio app to FastAPI
app = gr.mount_gradio_app(app, demo, path="/")
# Custom Swagger UI redirect
@app.get("/docs", include_in_schema=False)
async def custom_swagger_ui_html():
return HTMLResponse("""
<!DOCTYPE html>
<html>
<head>
<title>SenseVoice API Documentation</title>
<meta http-equiv="refresh" content="0;url=/docs/" />
</head>
<body>
<p>Redirecting to API documentation...</p>
</body>
</html>
""")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)